@@ -138,6 +138,7 @@ the :math:`5`-adic and :math:`997`-adic regulators of this curve.
138
138
139
139
::
140
140
141
+ sage: # needs sage.libs.eclib
141
142
sage: E = EllipticCurve('389a')
142
143
sage: E.padic_regulator(5, 10)
143
144
5^2 + 2*5^3 + 2*5^4 + 4*5^5 + 3*5^6 + 4*5^7 + 3*5^8 + 5^9 + O(5^11)
@@ -154,6 +155,7 @@ nontrivial computational challenge. Now in Sage computing the
154
155
155
156
::
156
157
158
+ sage: # needs sage.libs.eclib
157
159
sage: E.padic_regulator(100003,5) # a couple of seconds
158
160
42582*100003^2 + 35250*100003^3 + 12790*100003^4 + 64078*100003^5 + O(100003^6)
159
161
@@ -176,6 +178,7 @@ rank :math:`2`.
176
178
177
179
::
178
180
181
+ sage: # needs.sage.libs.eclib
179
182
sage: E = EllipticCurve('389a')
180
183
sage: L = E.padic_lseries(5)
181
184
sage: L
@@ -199,7 +202,7 @@ unpublished papers of Wuthrich and me.
199
202
sage: E.sha().bound() # so only 2 could divide sha
200
203
[2]
201
204
sage: E = EllipticCurve('37a1') # so only 2 could divide sha
202
- sage: E.sha().bound()
205
+ sage: E.sha().bound() # needs sage.libs.eclib
203
206
([2], 1)
204
207
sage: E = EllipticCurve('389a1')
205
208
sage: E.sha().bound()
@@ -223,6 +226,7 @@ and :math:`7` do not divide the Shafarevich-Tate group of our rank
223
226
224
227
::
225
228
229
+ sage: # needs sage.libs.eclib
226
230
sage: E = EllipticCurve('389a1')
227
231
sage: sha = E.sha()
228
232
sage: sha.p_primary_bound(5) # iwasawa theory ==> 5 doesn't divide sha
@@ -242,6 +246,7 @@ number in general!
242
246
243
247
::
244
248
249
+ sage: # needs sage.libs.eclib
245
250
sage: E.sha().an()
246
251
1.00000000000000
247
252
@@ -257,7 +262,7 @@ GP scripts for computing Mordell-Weil groups of elliptic curves.
257
262
sage: E = EllipticCurve([1,2,5,17,159])
258
263
sage: E.conductor() # not in the Tables
259
264
10272987
260
- sage: E.gens() # a few seconds
265
+ sage: E.gens() # a few seconds, needs sage.libs.eclib
261
266
[(-3 : 9 : 1), (-3347/3249 : 1873597/185193 : 1)]
262
267
263
268
@@ -274,6 +279,7 @@ the only free open source implementation available.
274
279
275
280
::
276
281
282
+ sage: # needs sage.libs.eclib
277
283
sage: E = EllipticCurve([1,2,5,7,17])
278
284
sage: E.integral_points(both_signs=True)
279
285
[(1 : -9 : 1), (1 : 3 : 1)]
@@ -283,6 +289,7 @@ rank :math:`3`, which has 36 integral points.
283
289
284
290
::
285
291
292
+ sage: # needs sage.libs.eclib
286
293
sage: E = elliptic_curves.rank(3)[0]
287
294
sage: E.integral_points(both_signs=True) # less than 3 seconds
288
295
[(-3 : -1 : 1), (-3 : 0 : 1), (-2 : -4 : 1), (-2 : 3 : 1), ...(816 : -23310 : 1), (816 : 23309 : 1)]
@@ -299,6 +306,7 @@ points).
299
306
300
307
::
301
308
309
+ sage: # needs sage.libs.eclib
302
310
sage: E = elliptic_curves.rank(4)[0]
303
311
sage: E.integral_points(both_signs=True) # about a minute
304
312
[(-10 : 3 : 1), (-10 : 7 : 1), ...
0 commit comments