@@ -2066,7 +2066,7 @@ def maximal_barrier(self, vertex):
20662066 `v` is the end of that edge in `V(K)`, then `M \cap E(K)` is a perfect
20672067 matching of `K - v`::
20682068
2069- sage: K = J.subgraph(vertices=(J.connected_components())[0])
2069+ sage: K = J.subgraph(vertices=(J.connected_components(sort=True ))[0])
20702070 sage: # Let F := \partial_G(K) and T := M \cap F
20712071 sage: F = [edge for edge in G.edge_iterator()
20722072 ....: if (edge[0] in K and edge[1] not in K)
@@ -2090,7 +2090,7 @@ def maximal_barrier(self, vertex):
20902090 `G - B` is factor critical::
20912091
20922092 sage: all((K.subgraph(vertices=connected_component)).is_factor_critical()
2093- ....: for connected_component in K.connected_components()
2093+ ....: for connected_component in K.connected_components(sort=True )
20942094 ....: )
20952095 True
20962096
@@ -2876,7 +2876,7 @@ def is_brick(self, coNP_certificate=False):
28762876 # Let K be a nontrivial odd component of H := G - B. Note that
28772877 # there exists at least one such K since G is nonbipartite
28782878 nontrivial_odd_component = next (
2879- (component for component in H .connected_components ()
2879+ (component for component in H .connected_components (sort = True )
28802880 if len (component ) % 2 and len (component ) > 1 ), None
28812881 )
28822882
@@ -2920,7 +2920,7 @@ def is_brick(self, coNP_certificate=False):
29202920 H .delete_vertices (two_vertex_cut )
29212921
29222922 # Check if all components of H are odd
2923- components = H .connected_components ()
2923+ components = H .connected_components (sort = True )
29242924
29252925 # Find a nontrivial odd component
29262926 if all (len (c ) % 2 for c in components ):
0 commit comments