@@ -4852,11 +4852,15 @@ def bigraded_betti_numbers(self, base_ring=ZZ, verbose=False):
4852
4852
4853
4853
INPUT:
4854
4854
4855
- - ``base_ring`` -- (optional, default ``ZZ``) the base ring used
4855
+ - ``base_ring`` -- (default: ``ZZ``) the base ring used
4856
4856
when computing homology
4857
- - ``verbose`` -- (optional, default ``False``) if ``True``, print
4858
- messages during the computation, which indicate in which subcomplexes
4859
- non-trivial homologies appear
4857
+ - ``verbose`` -- (default: ``False``) if ``True``, print
4858
+ messages during the computation, which indicate in which
4859
+ subcomplexes non-trivial homologies appear
4860
+
4861
+ .. NOTE::
4862
+
4863
+ If ``verbose`` is ``True``, then caching is avoided.
4860
4864
4861
4865
.. SEEALSO::
4862
4866
@@ -4940,11 +4944,15 @@ def bigraded_betti_number(self, a, b, base_ring=ZZ, verbose=False):
4940
4944
4941
4945
INPUT:
4942
4946
4943
- - ``base_ring`` -- (optional, default ``ZZ``) the base ring used
4947
+ - ``base_ring`` -- (default: ``ZZ``) the base ring used
4944
4948
when computing homology
4945
- - ``verbose`` -- (optional, default ``False``) if ``True``, print
4946
- messages during the computation, which indicate in which subcomplexes
4947
- non-trivial homologies appear
4949
+ - ``verbose`` -- (default: ``False``) if ``True``, print
4950
+ messages during the computation, which indicate in which
4951
+ subcomplexes non-trivial homologies appear
4952
+
4953
+ .. NOTE::
4954
+
4955
+ If ``verbose`` is ``True``, then caching is avoided.
4948
4956
4949
4957
EXAMPLES::
4950
4958
@@ -4966,9 +4974,12 @@ def bigraded_betti_number(self, a, b, base_ring=ZZ, verbose=False):
4966
4974
0
4967
4975
sage: Y = SimplicialComplex([[1,2,3],[1,2,4],[3,5],[4,5]])
4968
4976
sage: Y.bigraded_betti_number(-1, 4, verbose=True)
4969
- Non-trivial homology Z in dimension 0 of the full subcomplex generated by a set of vertices (1, 5)
4970
- Non-trivial homology Z in dimension 0 of the full subcomplex generated by a set of vertices (2, 5)
4971
- Non-trivial homology Z in dimension 0 of the full subcomplex generated by a set of vertices (3, 4)
4977
+ Non-trivial homology Z in dimension 0 of the full subcomplex
4978
+ generated by a set of vertices (1, 5)
4979
+ Non-trivial homology Z in dimension 0 of the full subcomplex
4980
+ generated by a set of vertices (2, 5)
4981
+ Non-trivial homology Z in dimension 0 of the full subcomplex
4982
+ generated by a set of vertices (3, 4)
4972
4983
3
4973
4984
"""
4974
4985
if b % 2 :
0 commit comments