@@ -949,9 +949,9 @@ def __classcall__(cls, base, names=None, degrees=None, R=None, I=None, category=
949
949
950
950
TESTS::
951
951
952
- sage: A1 = GradedCommutativeAlgebra(GF(2), 'x,y', (3, 6)) # needs sage.rings.finite_rings
953
- sage: A2 = GradedCommutativeAlgebra(GF(2), ['x', 'y'], [3, 6]) # needs sage.rings.finite_rings
954
- sage: A1 is A2 # needs sage.rings.finite_rings
952
+ sage: A1 = GradedCommutativeAlgebra(GF(2), 'x,y', (3, 6))
953
+ sage: A2 = GradedCommutativeAlgebra(GF(2), ['x', 'y'], [3, 6])
954
+ sage: A1 is A2
955
955
True
956
956
957
957
Testing the single generator case (:trac:`25276`)::
@@ -962,8 +962,8 @@ def __classcall__(cls, base, names=None, degrees=None, R=None, I=None, category=
962
962
sage: A4.<z> = GradedCommutativeAlgebra(QQ, degrees=[4])
963
963
sage: z**2 == 0
964
964
False
965
- sage: A5.<z> = GradedCommutativeAlgebra(GF(2)) # needs sage.rings.finite_rings
966
- sage: z**2 == 0 # needs sage.rings.finite_rings
965
+ sage: A5.<z> = GradedCommutativeAlgebra(GF(2))
966
+ sage: z**2 == 0
967
967
False
968
968
"""
969
969
if names is None :
@@ -1207,7 +1207,6 @@ def quotient(self, I, check=True):
1207
1207
1208
1208
EXAMPLES::
1209
1209
1210
- sage: # needs sage.rings.finite_rings
1211
1210
sage: A.<x,y,z,t> = GradedCommutativeAlgebra(GF(5), degrees=(2, 2, 3, 4))
1212
1211
sage: I = A.ideal([x*t+z^2, x*y - t])
1213
1212
sage: B = A.quotient(I); B
@@ -1910,7 +1909,6 @@ def degree(self, total=False):
1910
1909
1911
1910
EXAMPLES::
1912
1911
1913
- sage: # needs sage.rings.finite_rings
1914
1912
sage: A.<a,b,c> = GradedCommutativeAlgebra(GF(2),
1915
1913
....: degrees=((1,0), (0,1), (1,1)))
1916
1914
sage: (a**2*b).degree()
@@ -2390,23 +2388,23 @@ def cohomology_generators(self, max_degree):
2390
2388
In contrast, the corresponding algebra in characteristic `p`
2391
2389
has finitely generated cohomology::
2392
2390
2393
- sage: A3.<a,x,y> = GradedCommutativeAlgebra(GF(3), degrees=(1,2,2)) # needs sage.rings.finite_rings
2394
- sage: B3 = A3.cdg_algebra(differential={y: a*x}) # needs sage.rings.finite_rings
2395
- sage: B3.cohomology_generators(16) # needs sage.rings.finite_rings
2391
+ sage: A3.<a,x,y> = GradedCommutativeAlgebra(GF(3), degrees=(1,2,2))
2392
+ sage: B3 = A3.cdg_algebra(differential={y: a*x})
2393
+ sage: B3.cohomology_generators(16)
2396
2394
{1: [a], 2: [x], 3: [a*y], 5: [a*y^2], 6: [y^3]}
2397
2395
2398
2396
This method works with both singly graded and multi-graded algebras::
2399
2397
2400
- sage: Cs.<a,b,c,d> = GradedCommutativeAlgebra(GF(2), degrees=(1,2,2,3)) # needs sage.rings.finite_rings
2401
- sage: Ds = Cs.cdg_algebra({a:c, b:d}) # needs sage.rings.finite_rings
2402
- sage: Ds.cohomology_generators(10) # needs sage.rings.finite_rings
2398
+ sage: Cs.<a,b,c,d> = GradedCommutativeAlgebra(GF(2), degrees=(1,2,2,3))
2399
+ sage: Ds = Cs.cdg_algebra({a:c, b:d})
2400
+ sage: Ds.cohomology_generators(10)
2403
2401
{2: [a^2], 4: [b^2]}
2404
2402
2405
- sage: Cm.<a,b,c,d> = GradedCommutativeAlgebra(GF(2), # needs sage.rings.finite_rings
2403
+ sage: Cm.<a,b,c,d> = GradedCommutativeAlgebra(GF(2),
2406
2404
....: degrees=((1,0), (1,1),
2407
2405
....: (0,2), (0,3)))
2408
- sage: Dm = Cm.cdg_algebra({a:c, b:d}) # needs sage.rings.finite_rings
2409
- sage: Dm.cohomology_generators(10) # needs sage.rings.finite_rings
2406
+ sage: Dm = Cm.cdg_algebra({a:c, b:d})
2407
+ sage: Dm.cohomology_generators(10)
2410
2408
{2: [a^2], 4: [b^2]}
2411
2409
2412
2410
TESTS:
@@ -3509,9 +3507,9 @@ def GradedCommutativeAlgebra(ring, names=None, degrees=None, max_degree=None,
3509
3507
We can construct multi-graded rings as well. We work in characteristic 2
3510
3508
for a change, so the algebras here are honestly commutative::
3511
3509
3512
- sage: C.<a,b,c,d> = GradedCommutativeAlgebra(GF(2), # needs sage.rings.finite_rings
3510
+ sage: C.<a,b,c,d> = GradedCommutativeAlgebra(GF(2),
3513
3511
....: degrees=((1,0), (1,1), (0,2), (0,3)))
3514
- sage: D = C.cdg_algebra(differential={a: c, b: d}); D # needs sage.rings.finite_rings
3512
+ sage: D = C.cdg_algebra(differential={a: c, b: d}); D
3515
3513
Commutative Differential Graded Algebra with generators ('a', 'b', 'c', 'd')
3516
3514
in degrees ((1, 0), (1, 1), (0, 2), (0, 3)) over Finite Field of size 2
3517
3515
with differential:
@@ -3524,46 +3522,46 @@ def GradedCommutativeAlgebra(ring, names=None, degrees=None, max_degree=None,
3524
3522
Use tuples, lists, vectors, or elements of additive
3525
3523
abelian groups to specify degrees::
3526
3524
3527
- sage: D.basis(3) # basis in total degree 3 # needs sage.rings.finite_rings
3525
+ sage: D.basis(3) # basis in total degree 3
3528
3526
[a^3, a*b, a*c, d]
3529
- sage: D.basis((1,2)) # basis in degree (1,2) # needs sage.rings.finite_rings
3527
+ sage: D.basis((1,2)) # basis in degree (1,2)
3530
3528
[a*c]
3531
- sage: D.basis([1,2]) # needs sage.rings.finite_rings
3529
+ sage: D.basis([1,2])
3532
3530
[a*c]
3533
- sage: D.basis(vector([1,2])) # needs sage.rings.finite_rings
3531
+ sage: D.basis(vector([1,2]))
3534
3532
[a*c]
3535
3533
sage: G = AdditiveAbelianGroup([0,0]); G
3536
3534
Additive abelian group isomorphic to Z + Z
3537
- sage: D.basis(G(vector([1,2]))) # needs sage.rings.finite_rings
3535
+ sage: D.basis(G(vector([1,2])))
3538
3536
[a*c]
3539
3537
3540
3538
At this point, ``a``, for example, is an element of ``C``. We can
3541
3539
redefine it so that it is instead an element of ``D`` in several
3542
3540
ways, for instance using :meth:`gens` method::
3543
3541
3544
- sage: a, b, c, d = D.gens() # needs sage.rings.finite_rings
3545
- sage: a.differential() # needs sage.rings.finite_rings
3542
+ sage: a, b, c, d = D.gens()
3543
+ sage: a.differential()
3546
3544
c
3547
3545
3548
3546
Or the :meth:`inject_variables` method::
3549
3547
3550
- sage: D.inject_variables() # needs sage.rings.finite_rings
3548
+ sage: D.inject_variables()
3551
3549
Defining a, b, c, d
3552
- sage: (a*b).differential() # needs sage.rings.finite_rings
3550
+ sage: (a*b).differential()
3553
3551
b*c + a*d
3554
- sage: (a*b*c**2).degree() # needs sage.rings.finite_rings
3552
+ sage: (a*b*c**2).degree()
3555
3553
(2, 5)
3556
3554
3557
3555
Degrees are returned as elements of additive abelian groups::
3558
3556
3559
- sage: (a*b*c**2).degree() in G # needs sage.rings.finite_rings
3557
+ sage: (a*b*c**2).degree() in G
3560
3558
True
3561
3559
3562
- sage: (a*b*c**2).degree(total=True) # total degree # needs sage.rings.finite_rings
3560
+ sage: (a*b*c**2).degree(total=True) # total degree
3563
3561
7
3564
- sage: D.cohomology(4) # needs sage.rings.finite_rings
3562
+ sage: D.cohomology(4)
3565
3563
Free module generated by {[a^4], [b^2]} over Finite Field of size 2
3566
- sage: D.cohomology((2,2)) # needs sage.rings.finite_rings
3564
+ sage: D.cohomology((2,2))
3567
3565
Free module generated by {[b^2]} over Finite Field of size 2
3568
3566
3569
3567
Graded algebra with maximal degree::
0 commit comments