Skip to content

Commit bd8b942

Browse files
author
Matthias Koeppe
committed
sage.rings.function_field: Update # needs
1 parent 3535b98 commit bd8b942

File tree

2 files changed

+17
-12
lines changed

2 files changed

+17
-12
lines changed

src/sage/rings/function_field/function_field_rational.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -378,9 +378,9 @@ def _factor_univariate_polynomial(self, f, proof=None):
378378
sage: R.<t> = FunctionField(GF(7))
379379
sage: S.<X> = R[]
380380
sage: f = (1/t)*(X^4 - 1/t^2)*(X^3 - t^3)
381-
sage: f.factor()
381+
sage: f.factor() # needs sage.libs.pari
382382
(1/t) * (X + 3*t) * (X + 5*t) * (X + 6*t) * (X^2 + 1/t) * (X^2 + 6/t)
383-
sage: f.factor().prod() == f
383+
sage: f.factor().prod() == f # needs sage.libs.pari
384384
True
385385
386386
Factoring over a function field over a non-prime finite field::

src/sage/rings/function_field/ideal.py

Lines changed: 15 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -515,20 +515,21 @@ def divisor_of_zeros(self):
515515
516516
EXAMPLES::
517517
518-
sage: # needs sage.rings.finite_rings
518+
sage: # needs sage.modules sage.rings.finite_rings
519519
sage: K.<x> = FunctionField(GF(4))
520520
sage: O = K.maximal_order()
521521
sage: I = O.ideal(x*(x + 1)^2/(x^2 + x + 1))
522522
sage: I.divisor_of_zeros()
523523
Place (x) + 2*Place (x + 1)
524524
525+
sage: # needs sage.modules
525526
sage: K.<x> = FunctionField(GF(2))
526527
sage: Oinf = K.maximal_order_infinite()
527528
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
528529
sage: I.divisor_of_zeros()
529530
2*Place (1/x)
530531
531-
sage: # needs sage.rings.function_field
532+
sage: # needs sage.modules sage.rings.function_field
532533
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
533534
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
534535
sage: O = L.maximal_order()
@@ -551,20 +552,21 @@ def divisor_of_poles(self):
551552
552553
EXAMPLES::
553554
554-
sage: # needs sage.rings.finite_rings
555+
sage: # needs sage.modules sage.rings.finite_rings
555556
sage: K.<x> = FunctionField(GF(4))
556557
sage: O = K.maximal_order()
557558
sage: I = O.ideal(x*(x + 1)^2/(x^2 + x + 1))
558559
sage: I.divisor_of_poles()
559560
Place (x + z2) + Place (x + z2 + 1)
560561
562+
sage: # needs sage.modules
561563
sage: K.<x> = FunctionField(GF(2))
562564
sage: Oinf = K.maximal_order_infinite()
563565
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
564566
sage: I.divisor_of_poles()
565567
0
566568
567-
sage: # needs sage.rings.function_field
569+
sage: # needs sage.modules sage.rings.function_field
568570
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
569571
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
570572
sage: O = L.maximal_order()
@@ -1022,17 +1024,20 @@ def module(self):
10221024
sage: O = K.maximal_order(); O
10231025
Maximal order of Rational function field in x over Finite Field of size 7
10241026
sage: K.polynomial_ring()
1025-
Univariate Polynomial Ring in x over Rational function field in x over Finite Field of size 7
1027+
Univariate Polynomial Ring in x over
1028+
Rational function field in x over Finite Field of size 7
10261029
sage: I = O.ideal([x^2 + 1, x*(x^2+1)])
10271030
sage: I.gens()
10281031
(x^2 + 1,)
1029-
sage: I.module()
1030-
Free module of degree 1 and rank 1 over Maximal order of Rational function field in x over Finite Field of size 7
1032+
sage: I.module() # needs sage.modules
1033+
Free module of degree 1 and rank 1 over
1034+
Maximal order of Rational function field in x over Finite Field of size 7
10311035
Echelon basis matrix:
10321036
[x^2 + 1]
1033-
sage: V, from_V, to_V = K.vector_space(); V
1034-
Vector space of dimension 1 over Rational function field in x over Finite Field of size 7
1035-
sage: I.module().is_submodule(V)
1037+
sage: V, from_V, to_V = K.vector_space(); V # needs sage.modules
1038+
Vector space of dimension 1 over
1039+
Rational function field in x over Finite Field of size 7
1040+
sage: I.module().is_submodule(V) # needs sage.modules
10361041
True
10371042
"""
10381043
return self._module

0 commit comments

Comments
 (0)