@@ -515,20 +515,21 @@ def divisor_of_zeros(self):
515
515
516
516
EXAMPLES::
517
517
518
- sage: # needs sage.rings.finite_rings
518
+ sage: # needs sage.modules sage. rings.finite_rings
519
519
sage: K.<x> = FunctionField(GF(4))
520
520
sage: O = K.maximal_order()
521
521
sage: I = O.ideal(x*(x + 1)^2/(x^2 + x + 1))
522
522
sage: I.divisor_of_zeros()
523
523
Place (x) + 2*Place (x + 1)
524
524
525
+ sage: # needs sage.modules
525
526
sage: K.<x> = FunctionField(GF(2))
526
527
sage: Oinf = K.maximal_order_infinite()
527
528
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
528
529
sage: I.divisor_of_zeros()
529
530
2*Place (1/x)
530
531
531
- sage: # needs sage.rings.function_field
532
+ sage: # needs sage.modules sage. rings.function_field
532
533
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
533
534
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
534
535
sage: O = L.maximal_order()
@@ -551,20 +552,21 @@ def divisor_of_poles(self):
551
552
552
553
EXAMPLES::
553
554
554
- sage: # needs sage.rings.finite_rings
555
+ sage: # needs sage.modules sage. rings.finite_rings
555
556
sage: K.<x> = FunctionField(GF(4))
556
557
sage: O = K.maximal_order()
557
558
sage: I = O.ideal(x*(x + 1)^2/(x^2 + x + 1))
558
559
sage: I.divisor_of_poles()
559
560
Place (x + z2) + Place (x + z2 + 1)
560
561
562
+ sage: # needs sage.modules
561
563
sage: K.<x> = FunctionField(GF(2))
562
564
sage: Oinf = K.maximal_order_infinite()
563
565
sage: I = Oinf.ideal((x + 1)/(x^3 + 1))
564
566
sage: I.divisor_of_poles()
565
567
0
566
568
567
- sage: # needs sage.rings.function_field
569
+ sage: # needs sage.modules sage. rings.function_field
568
570
sage: K.<x> = FunctionField(GF(2)); _.<Y> = K[]
569
571
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x)
570
572
sage: O = L.maximal_order()
@@ -1022,17 +1024,20 @@ def module(self):
1022
1024
sage: O = K.maximal_order(); O
1023
1025
Maximal order of Rational function field in x over Finite Field of size 7
1024
1026
sage: K.polynomial_ring()
1025
- Univariate Polynomial Ring in x over Rational function field in x over Finite Field of size 7
1027
+ Univariate Polynomial Ring in x over
1028
+ Rational function field in x over Finite Field of size 7
1026
1029
sage: I = O.ideal([x^2 + 1, x*(x^2+1)])
1027
1030
sage: I.gens()
1028
1031
(x^2 + 1,)
1029
- sage: I.module()
1030
- Free module of degree 1 and rank 1 over Maximal order of Rational function field in x over Finite Field of size 7
1032
+ sage: I.module() # needs sage.modules
1033
+ Free module of degree 1 and rank 1 over
1034
+ Maximal order of Rational function field in x over Finite Field of size 7
1031
1035
Echelon basis matrix:
1032
1036
[x^2 + 1]
1033
- sage: V, from_V, to_V = K.vector_space(); V
1034
- Vector space of dimension 1 over Rational function field in x over Finite Field of size 7
1035
- sage: I.module().is_submodule(V)
1037
+ sage: V, from_V, to_V = K.vector_space(); V # needs sage.modules
1038
+ Vector space of dimension 1 over
1039
+ Rational function field in x over Finite Field of size 7
1040
+ sage: I.module().is_submodule(V) # needs sage.modules
1036
1041
True
1037
1042
"""
1038
1043
return self ._module
0 commit comments