@@ -4108,14 +4108,14 @@ def isomorphism_type_info_simple_group(self):
4108
4108
4109
4109
def minimal_normal_subgroups (self ):
4110
4110
"""
4111
- Return a list containing all minimal normal subgroups of the group.
4111
+ Return a list containing those nontrivial normal subgroups of the group that are minimal among the nontrivial normal subgroups .
4112
4112
4113
4113
EXAMPLES::
4114
4114
4115
- sage: G = PermutationGroup([(1,2,3),(4,5)])
4116
- sage: G.minimal_normal_subgroups()
4117
- [Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)]),
4118
- Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)])]
4115
+ sage: G = PermutationGroup([(1,2,3),(4,5)])
4116
+ sage: G.minimal_normal_subgroups()
4117
+ [Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)]),
4118
+ Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)])]
4119
4119
"""
4120
4120
gap_subgroups = self .gap ().MinimalNormalSubgroups ()
4121
4121
sage_subgroups = [self .subgroup (gap_group = gap_subgroup ) for gap_subgroup in gap_subgroups ]
@@ -4128,9 +4128,10 @@ def maximal_normal_subgroups(self):
4128
4128
4129
4129
EXAMPLES::
4130
4130
4131
- sage: G = SymmetricGroup(4 )
4131
+ sage: G = PermutationGroup([(1,2,3),(4,5)] )
4132
4132
sage: G.maximal_normal_subgroups()
4133
- [Subgroup generated by [(2,3,4), (1,2,3)] of (Symmetric group of order 4! as a permutation group)]
4133
+ [Subgroup generated by [(1,2,3)] of (Permutation Group with generators [(4,5), (1,2,3)]),
4134
+ Subgroup generated by [(4,5)] of (Permutation Group with generators [(4,5), (1,2,3)])]
4134
4135
"""
4135
4136
gap_subgroups = self .gap ().MaximalNormalSubgroups ()
4136
4137
sage_subgroups = [self .subgroup (gap_group = gap_subgroup ) for gap_subgroup in gap_subgroups ]
0 commit comments