@@ -252,8 +252,7 @@ class kRegularSequenceSpace(RecognizableSeriesSpace):
252
252
253
253
- ``k`` -- an integer at least `2` specifying the base
254
254
255
- - ``coefficients`` -- a (semi-)ring. If not specified (``None``),
256
- then the integer ring is used.
255
+ - ``coefficient_ring`` -- a (semi-)ring.
257
256
258
257
- ``category`` -- (default: ``None``) the category of this
259
258
space
@@ -273,7 +272,7 @@ class kRegularSequenceSpace(RecognizableSeriesSpace):
273
272
Element = kRegularSequence
274
273
275
274
@classmethod
276
- def __normalize__ (cls , k , coefficients = None , ** kwds ):
275
+ def __normalize__ (cls , k , coefficient_ring , ** kwds ):
277
276
r"""
278
277
Normalizes the input in order to ensure a unique
279
278
representation.
@@ -285,18 +284,12 @@ def __normalize__(cls, k, coefficients=None, **kwds):
285
284
sage: Seq2 = kRegularSequenceSpace(2, ZZ)
286
285
sage: Seq2.category()
287
286
Category of sets
288
-
289
- ::
290
-
291
- sage: Seq2 is kRegularSequenceSpace(2)
292
- True
287
+ sage: Seq2.alphabet()
288
+ {0, 1}
293
289
"""
294
290
from sage .arith .srange import srange
295
- from sage .rings .integer_ring import ZZ
296
- if coefficients is None :
297
- coefficients = ZZ
298
291
nargs = super (kRegularSequenceSpace , cls ).__normalize__ (
299
- coefficients , alphabet = srange (k ), ** kwds )
292
+ coefficient_ring , alphabet = srange (k ), ** kwds )
300
293
return (k ,) + nargs
301
294
302
295
def __init__ (self , k , * args , ** kwds ):
0 commit comments