Skip to content

Commit c4ed74f

Browse files
committed
remove a deprecated alias in quadratic forms
1 parent 83b52a7 commit c4ed74f

File tree

1 file changed

+32
-32
lines changed

1 file changed

+32
-32
lines changed

src/sage/quadratic_forms/quadratic_form.py

Lines changed: 32 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -30,14 +30,13 @@
3030
from sage.matrix.matrix_space import MatrixSpace
3131
from sage.misc.functional import denominator, is_even
3232
from sage.misc.lazy_import import lazy_import
33-
from sage.misc.superseded import deprecated_function_alias
3433
from sage.modules.free_module_element import vector
3534
from sage.quadratic_forms.quadratic_form__evaluate import (
3635
QFEvaluateMatrix,
3736
QFEvaluateVector,
3837
)
3938
from sage.rings.ideal import Ideal
40-
from sage.rings.integer_ring import ZZ, IntegerRing
39+
from sage.rings.integer_ring import ZZ
4140
from sage.rings.polynomial.multi_polynomial import MPolynomial
4241
from sage.rings.polynomial.polynomial_element import Polynomial
4342
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
@@ -120,23 +119,23 @@ def quadratic_form_from_invariants(F, rk, det, P, sminus):
120119
f = 0
121120
if sminus % 4 in (2, 3):
122121
f = 1
123-
if (f + len(P)) % 2 == 1:
122+
if (f + len(P)) % 2:
124123
raise ValueError("invariants do not define a rational quadratic form")
125124
D = []
126125
while rk >= 2:
127126
if rk >= 4:
128127
if sminus > 0:
129128
a = ZZ(-1)
130129
else:
131-
a = ZZ(1)
130+
a = ZZ.one()
132131
elif rk == 3:
133132
Pprime = [p for p in P if hilbert_symbol(-1, -d, p) == 1]
134133
Pprime += [p for p in (2 * d).prime_divisors()
135134
if hilbert_symbol(-1, -d, p) == -1 and p not in P]
136135
if sminus > 0:
137136
a = ZZ(-1)
138137
else:
139-
a = ZZ(1)
138+
a = ZZ.one()
140139
for p in Pprime:
141140
if d.valuation(p) % 2 == 0:
142141
a *= p
@@ -650,11 +649,13 @@ def __init__(
650649
self.__det = determinant
651650
self._external_initialization_list.append('determinant')
652651

653-
def list_external_initializations(self):
652+
def list_external_initializations(self) -> list:
654653
"""
655654
Return a list of the fields which were set externally at
656655
creation, and not created through the usual :class:`QuadraticForm`
657-
methods. These fields are as good as the external process
656+
methods.
657+
658+
These fields are as good as the external process
658659
that made them, and are thus not guaranteed to be correct.
659660
660661
EXAMPLES::
@@ -728,7 +729,7 @@ def _repr_(self) -> str:
728729
out_str += '\n'
729730
out_str += "[ "
730731
for j in range(n):
731-
if (i > j):
732+
if i > j:
732733
out_str += "* "
733734
else:
734735
out_str += str(self[i, j]) + " "
@@ -752,7 +753,7 @@ def _latex_(self) -> str:
752753
out_str += "\\left[ \\begin{array}{" + n * "c" + "}"
753754
for i in range(n):
754755
for j in range(n):
755-
if (i > j):
756+
if i > j:
756757
out_str += " * & "
757758
else:
758759
out_str += str(self[i, j]) + " & "
@@ -780,11 +781,9 @@ def __getitem__(self, ij):
780781

781782
# Ensure we're using upper-triangular coordinates
782783
if i > j:
783-
tmp = i
784-
i = j
785-
j = tmp
784+
i, j = j, i
786785

787-
return self.__coeffs[i*self.__n - i*(i-1)//2 + j - i]
786+
return self.__coeffs[i * self.__n - i * (i - 1) // 2 + j - i]
788787

789788
def __setitem__(self, ij, coeff):
790789
r"""
@@ -814,13 +813,11 @@ def __setitem__(self, ij, coeff):
814813

815814
# Ensure we're using upper-triangular coordinates
816815
if i > j:
817-
tmp = i
818-
i = j
819-
j = tmp
816+
i, j = j, i
820817

821818
# Set the entry
822819
try:
823-
self.__coeffs[i*self.__n - i*(i-1)//2 + j - i] = self.__base_ring(coeff)
820+
self.__coeffs[i * self.__n - i * (i - 1) // 2 + j - i] = self.__base_ring(coeff)
824821
except Exception:
825822
raise RuntimeError("this coefficient cannot be coerced to an element of the base ring for the quadratic form")
826823

@@ -884,7 +881,7 @@ def __add__(self, right):
884881
"""
885882
if not isinstance(right, QuadraticForm):
886883
raise TypeError("cannot add these objects since they are not both quadratic forms")
887-
elif (self.base_ring() != right.base_ring()):
884+
elif self.base_ring() != right.base_ring():
888885
raise TypeError("cannot add these since the quadratic forms do not have the same base rings")
889886

890887
Q = QuadraticForm(self.base_ring(), self.dim() + right.dim())
@@ -1106,7 +1103,7 @@ def _is_even_symmetric_matrix_(self, A, R=None):
11061103

11071104
# Test that all entries coerce to R
11081105
n = A.nrows()
1109-
if not ((A.base_ring() == R) or ring_coerce_test):
1106+
if not (A.base_ring() == R or ring_coerce_test):
11101107
try:
11111108
for i in range(n):
11121109
for j in range(i, n):
@@ -1186,7 +1183,7 @@ def Gram_matrix_rational(self):
11861183
sage: A.base_ring()
11871184
Rational Field
11881185
"""
1189-
return (ZZ(1) / ZZ(2)) * self.matrix()
1186+
return (ZZ.one() / ZZ(2)) * self.matrix()
11901187

11911188
def Gram_matrix(self):
11921189
r"""
@@ -1558,13 +1555,13 @@ def change_ring(self, R):
15581555
# Return the coerced form
15591556
return QuadraticForm(R, self.dim(), [R(x) for x in self.coefficients()])
15601557

1561-
base_change_to = deprecated_function_alias(35248, change_ring)
1562-
15631558
def level(self):
15641559
r"""
1565-
Determines the level of the quadratic form over a PID, which is a
1566-
generator for the smallest ideal `N` of `R` such that `N\cdot (` the matrix of
1567-
`2*Q` `)^{(-1)}` is in `R` with diagonal in `2R`.
1560+
Determine the level of the quadratic form over a PID.
1561+
1562+
This is a generator for the smallest ideal `N` of `R` such
1563+
that `N\cdot (` the matrix of `2*Q` `)^{(-1)}` is in `R` with
1564+
diagonal in `2R`.
15681565
15691566
Over `\ZZ` this returns a nonnegative number.
15701567
@@ -1610,7 +1607,7 @@ def level(self):
16101607
inv_denoms = []
16111608
for i in range(self.dim()):
16121609
for j in range(i, self.dim()):
1613-
if (i == j):
1610+
if i == j:
16141611
inv_denoms += [denominator(mat_inv[i, j] / 2)]
16151612
else:
16161613
inv_denoms += [denominator(mat_inv[i, j])]
@@ -1623,7 +1620,7 @@ def level(self):
16231620
##############################################################
16241621

16251622
# Normalize the result over ZZ
1626-
if self.base_ring() == IntegerRing():
1623+
if self.base_ring() == ZZ:
16271624
lvl = abs(lvl)
16281625

16291626
# Cache and return the level
@@ -1632,10 +1629,13 @@ def level(self):
16321629

16331630
def level_ideal(self):
16341631
r"""
1635-
Determine the level of the quadratic form (over `R`), which is the
1636-
smallest ideal `N` of `R` such that `N \cdot (` the matrix of `2Q` `)^{(-1)}` is
1637-
in `R` with diagonal in `2R`.
1638-
(Caveat: This always returns the principal ideal when working over a field!)
1632+
Determine the level of the quadratic form (over `R`).
1633+
1634+
This is the smallest ideal `N` of `R` such that `N \cdot (`
1635+
the matrix of `2Q` `)^{(-1)}` is in `R` with diagonal in `2R`.
1636+
1637+
(Caveat: This always returns the principal ideal when working
1638+
over a field!)
16391639
16401640
.. WARNING::
16411641
@@ -1724,7 +1724,7 @@ def bilinear_map(self, v, w):
17241724
return (self(v + w) - self(v) - self(w)) / 2
17251725

17261726

1727-
def DiagonalQuadraticForm(R, diag):
1727+
def DiagonalQuadraticForm(R, diag) -> QuadraticForm:
17281728
"""
17291729
Return a quadratic form over `R` which is a sum of squares.
17301730

0 commit comments

Comments
 (0)