@@ -276,16 +276,17 @@ def apply_coeff_map(self, f, new_base_ring=None, forward_hint=True):
276
276
277
277
EXAMPLES::
278
278
279
- sage: K.<z> = CyclotomicField(3) # needs sage.rings.number_field
280
- sage: P.<x,y> = LaurentPolynomialRing(K, 2) # needs sage.rings.number_field
281
- sage: I = P.ideal([x + z, y - z]) # needs sage.rings.number_field
282
- sage: h = K.hom([z^2]) # needs sage.rings.number_field
283
- sage: I.apply_coeff_map(h) # needs sage.rings.number_field
279
+ sage: # needs sage.rings.number_field
280
+ sage: K.<z> = CyclotomicField(3)
281
+ sage: P.<x,y> = LaurentPolynomialRing(K, 2)
282
+ sage: I = P.ideal([x + z, y - z])
283
+ sage: h = K.hom([z^2])
284
+ sage: I.apply_coeff_map(h)
284
285
Ideal (x - z - 1, y + z + 1) of Multivariate Laurent Polynomial Ring
285
286
in x, y over Cyclotomic Field of order 3 and degree 2
286
- sage: K1.<z1> = CyclotomicField(12) # needs sage.rings.number_field
287
- sage: h1 = K.hom([z1^4]) # needs sage.rings.number_field
288
- sage: I.apply_coeff_map(h1, new_base_ring=K1) # needs sage.rings.number_field
287
+ sage: K1.<z1> = CyclotomicField(12)
288
+ sage: h1 = K.hom([z1^4])
289
+ sage: I.apply_coeff_map(h1, new_base_ring=K1)
289
290
Ideal (x + z1^2 - 1, y - z1^2 + 1) of Multivariate Laurent Polynomial Ring
290
291
in x, y over Cyclotomic Field of order 12 and degree 4
291
292
"""
@@ -310,11 +311,12 @@ def toric_coordinate_change(self, M, forward_hint=True):
310
311
311
312
EXAMPLES::
312
313
313
- sage: K.<z> = CyclotomicField(3) # needs sage.rings.number_field
314
- sage: P.<x,y> = LaurentPolynomialRing(K, 2) # needs sage.rings.number_field
315
- sage: I = P.ideal([x + 1, y - 1]) # needs sage.rings.number_field
316
- sage: M = Matrix([[2,1], [1,-3]]) # needs sage.rings.number_field
317
- sage: I.toric_coordinate_change(M) # needs sage.rings.number_field
314
+ sage: # needs sage.rings.number_field
315
+ sage: K.<z> = CyclotomicField(3)
316
+ sage: P.<x,y> = LaurentPolynomialRing(K, 2)
317
+ sage: I = P.ideal([x + 1, y - 1])
318
+ sage: M = Matrix([[2,1], [1,-3]])
319
+ sage: I.toric_coordinate_change(M)
318
320
Ideal (x^2*y + 1, -1 + x*y^-3) of Multivariate Laurent Polynomial Ring
319
321
in x, y over Cyclotomic Field of order 3 and degree 2
320
322
"""
0 commit comments