Skip to content

Commit c7698e5

Browse files
author
Matthias Koeppe
committed
sage.rings.polynomial: Update # needs
1 parent 8a1f33d commit c7698e5

16 files changed

+515
-438
lines changed

src/sage/rings/polynomial/laurent_polynomial_ideal.py

Lines changed: 15 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -276,16 +276,17 @@ def apply_coeff_map(self, f, new_base_ring=None, forward_hint=True):
276276
277277
EXAMPLES::
278278
279-
sage: K.<z> = CyclotomicField(3) # needs sage.rings.number_field
280-
sage: P.<x,y> = LaurentPolynomialRing(K, 2) # needs sage.rings.number_field
281-
sage: I = P.ideal([x + z, y - z]) # needs sage.rings.number_field
282-
sage: h = K.hom([z^2]) # needs sage.rings.number_field
283-
sage: I.apply_coeff_map(h) # needs sage.rings.number_field
279+
sage: # needs sage.rings.number_field
280+
sage: K.<z> = CyclotomicField(3)
281+
sage: P.<x,y> = LaurentPolynomialRing(K, 2)
282+
sage: I = P.ideal([x + z, y - z])
283+
sage: h = K.hom([z^2])
284+
sage: I.apply_coeff_map(h)
284285
Ideal (x - z - 1, y + z + 1) of Multivariate Laurent Polynomial Ring
285286
in x, y over Cyclotomic Field of order 3 and degree 2
286-
sage: K1.<z1> = CyclotomicField(12) # needs sage.rings.number_field
287-
sage: h1 = K.hom([z1^4]) # needs sage.rings.number_field
288-
sage: I.apply_coeff_map(h1, new_base_ring=K1) # needs sage.rings.number_field
287+
sage: K1.<z1> = CyclotomicField(12)
288+
sage: h1 = K.hom([z1^4])
289+
sage: I.apply_coeff_map(h1, new_base_ring=K1)
289290
Ideal (x + z1^2 - 1, y - z1^2 + 1) of Multivariate Laurent Polynomial Ring
290291
in x, y over Cyclotomic Field of order 12 and degree 4
291292
"""
@@ -310,11 +311,12 @@ def toric_coordinate_change(self, M, forward_hint=True):
310311
311312
EXAMPLES::
312313
313-
sage: K.<z> = CyclotomicField(3) # needs sage.rings.number_field
314-
sage: P.<x,y> = LaurentPolynomialRing(K, 2) # needs sage.rings.number_field
315-
sage: I = P.ideal([x + 1, y - 1]) # needs sage.rings.number_field
316-
sage: M = Matrix([[2,1], [1,-3]]) # needs sage.rings.number_field
317-
sage: I.toric_coordinate_change(M) # needs sage.rings.number_field
314+
sage: # needs sage.rings.number_field
315+
sage: K.<z> = CyclotomicField(3)
316+
sage: P.<x,y> = LaurentPolynomialRing(K, 2)
317+
sage: I = P.ideal([x + 1, y - 1])
318+
sage: M = Matrix([[2,1], [1,-3]])
319+
sage: I.toric_coordinate_change(M)
318320
Ideal (x^2*y + 1, -1 + x*y^-3) of Multivariate Laurent Polynomial Ring
319321
in x, y over Cyclotomic Field of order 3 and degree 2
320322
"""

src/sage/rings/polynomial/laurent_polynomial_mpair.pyx

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -234,12 +234,13 @@ cdef class LaurentPolynomial_mpair(LaurentPolynomial):
234234
235235
check compatibility with :trac:`26105`::
236236
237-
sage: F.<t> = GF(4) # needs sage.rings.finite_rings
238-
sage: LF.<a,b> = LaurentPolynomialRing(F) # needs sage.rings.finite_rings
239-
sage: rho = LF.hom([b,a], base_map=F.frobenius_endomorphism()) # needs sage.rings.finite_rings
240-
sage: s = t*~a + b +~t*(b**-3)*a**2; rs = rho(s); rs # needs sage.rings.finite_rings
237+
sage: # needs sage.rings.finite_rings
238+
sage: F.<t> = GF(4)
239+
sage: LF.<a,b> = LaurentPolynomialRing(F)
240+
sage: rho = LF.hom([b,a], base_map=F.frobenius_endomorphism())
241+
sage: s = t*~a + b +~t*(b**-3)*a**2; rs = rho(s); rs
241242
a + (t + 1)*b^-1 + t*a^-3*b^2
242-
sage: s == rho(rs) # needs sage.rings.finite_rings
243+
sage: s == rho(rs)
243244
True
244245
"""
245246
p = self._poly

src/sage/rings/polynomial/laurent_polynomial_ring_base.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -396,9 +396,9 @@ def _is_valid_homomorphism_(self, codomain, im_gens, base_map=None):
396396
sage: L._is_valid_homomorphism_(K, (K(1/2), K(3/2))) # needs sage.rings.number_field
397397
True
398398
sage: Q5 = Qp(5); i5 = Q5(-1).sqrt() # needs sage.rings.padics
399-
sage: L._is_valid_homomorphism_(Q5, (Q5(1/2), Q5(3/2))) # no coercion # needs sage.rings.padics
399+
sage: L._is_valid_homomorphism_(Q5, (Q5(1/2), Q5(3/2))) # no coercion # needs sage.rings.number_field sage.rings.padics
400400
False
401-
sage: L._is_valid_homomorphism_(Q5, (Q5(1/2), Q5(3/2)), base_map=K.hom([i5])) # needs sage.rings.padics
401+
sage: L._is_valid_homomorphism_(Q5, (Q5(1/2), Q5(3/2)), base_map=K.hom([i5])) # needs sage.rings.number_field sage.rings.padics
402402
True
403403
"""
404404
if base_map is None and not codomain.has_coerce_map_from(self.base_ring()):

0 commit comments

Comments
 (0)