17
17
18
18
sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
19
19
sage: p = SymmetricFunctions(QQ).power() # optional - sage.modules
20
- sage: CIS = CycleIndexSeriesRing(QQ)
20
+ sage: CIS = CycleIndexSeriesRing(QQ) # optional - sage.modules
21
21
sage: geo1 = CIS(lambda i: p([1])^i) # optional - sage.modules
22
22
sage: geo2 = CIS(lambda i: p([2])^(i // 2) if is_even(i) else 0) # optional - sage.modules
23
23
sage: s = geo1 * geo2 # optional - sage.modules
@@ -294,7 +294,7 @@ def count(self, t):
294
294
295
295
sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
296
296
sage: p = SymmetricFunctions(QQ).power() # optional - sage.modules
297
- sage: CIS = CycleIndexSeriesRing(QQ)
297
+ sage: CIS = CycleIndexSeriesRing(QQ) # optional - sage.modules
298
298
sage: f = CIS([0, p([1]), 2*p([1,1]), 3*p([2,1])]) # optional - sage.modules
299
299
sage: f.count([1]) # optional - sage.modules
300
300
1
@@ -314,7 +314,7 @@ def coefficient_cycle_type(self, t):
314
314
315
315
sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
316
316
sage: p = SymmetricFunctions(QQ).power() # optional - sage.modules
317
- sage: CIS = CycleIndexSeriesRing(QQ)
317
+ sage: CIS = CycleIndexSeriesRing(QQ) # optional - sage.modules
318
318
sage: f = CIS([0, p([1]), 2*p([1,1]),3*p([2,1])]) # optional - sage.modules
319
319
sage: f.coefficient_cycle_type([1]) # optional - sage.modules
320
320
1
@@ -334,9 +334,9 @@ def isotype_generating_series(self):
334
334
EXAMPLES::
335
335
336
336
sage: P = species.PermutationSpecies()
337
- sage: cis = P.cycle_index_series()
338
- sage: f = cis.isotype_generating_series()
339
- sage: f[:10]
337
+ sage: cis = P.cycle_index_series() # optional - sage.modules
338
+ sage: f = cis.isotype_generating_series() # optional - sage.modules
339
+ sage: f[:10] # optional - sage.modules
340
340
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
341
341
"""
342
342
R = self .base_ring ()
@@ -352,8 +352,8 @@ def _ogs_gen(self, n, ao):
352
352
EXAMPLES::
353
353
354
354
sage: P = species.PermutationSpecies()
355
- sage: cis = P.cycle_index_series()
356
- sage: [cis._ogs_gen(i, 0) for i in range(10)]
355
+ sage: cis = P.cycle_index_series() # optional - sage.modules
356
+ sage: [cis._ogs_gen(i, 0) for i in range(10)] # optional - sage.modules
357
357
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
358
358
"""
359
359
if n < ao :
@@ -367,9 +367,9 @@ def generating_series(self):
367
367
EXAMPLES::
368
368
369
369
sage: P = species.PartitionSpecies()
370
- sage: cis = P.cycle_index_series()
371
- sage: f = cis.generating_series()
372
- sage: f[:5]
370
+ sage: cis = P.cycle_index_series() # optional - sage.modules
371
+ sage: f = cis.generating_series() # optional - sage.modules
372
+ sage: f[:5] # optional - sage.modules
373
373
[1, 1, 1, 5/6, 5/8]
374
374
"""
375
375
R = self .base_ring ()
@@ -385,8 +385,8 @@ def _egs_gen(self, n, ao):
385
385
EXAMPLES::
386
386
387
387
sage: P = species.PermutationSpecies()
388
- sage: cis = P.cycle_index_series()
389
- sage: [cis._egs_gen(i, 0) for i in range(10)]
388
+ sage: cis = P.cycle_index_series() # optional - sage.modules
389
+ sage: [cis._egs_gen(i, 0) for i in range(10)] # optional - sage.modules
390
390
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
391
391
"""
392
392
if n < ao :
@@ -409,16 +409,16 @@ def derivative(self, n=1):
409
409
410
410
The species `E` of sets satisfies the relationship `E' = E`::
411
411
412
- sage: E = species.SetSpecies().cycle_index_series()
413
- sage: E[:8] == E.derivative()[:8]
412
+ sage: E = species.SetSpecies().cycle_index_series() # optional - sage.modules
413
+ sage: E[:8] == E.derivative()[:8] # optional - sage.modules
414
414
True
415
415
416
416
The species `C` of cyclic orderings and the species `L` of linear
417
417
orderings satisfy the relationship `C' = L`::
418
418
419
- sage: C = species.CycleSpecies().cycle_index_series()
420
- sage: L = species.LinearOrderSpecies().cycle_index_series()
421
- sage: L[:8] == C.derivative()[:8]
419
+ sage: C = species.CycleSpecies().cycle_index_series() # optional - sage.modules
420
+ sage: L = species.LinearOrderSpecies().cycle_index_series() # optional - sage.modules
421
+ sage: L[:8] == C.derivative()[:8] # optional - sage.modules
422
422
True
423
423
"""
424
424
return self .derivative_with_respect_to_p1 (n = n )
@@ -439,9 +439,9 @@ def pointing(self):
439
439
The species `E^{\bullet}` of "pointed sets" satisfies
440
440
`E^{\bullet} = X \cdot E`::
441
441
442
- sage: E = species.SetSpecies().cycle_index_series()
443
- sage: X = species.SingletonSpecies().cycle_index_series()
444
- sage: E.pointing()[:8] == (X*E)[:8]
442
+ sage: E = species.SetSpecies().cycle_index_series() # optional - sage.modules
443
+ sage: X = species.SingletonSpecies().cycle_index_series() # optional - sage.modules
444
+ sage: E.pointing()[:8] == (X*E)[:8] # optional - sage.modules
445
445
True
446
446
"""
447
447
X = self .parent ()([1 ], valuation = 1 )
@@ -463,9 +463,9 @@ def exponential(self):
463
463
Let `BT` be the species of binary trees, `BF` the species of binary
464
464
forests, and `E` the species of sets. Then we have `BF = E \circ BT`::
465
465
466
- sage: BT = species.BinaryTreeSpecies().cycle_index_series()
467
- sage: BF = species.BinaryForestSpecies().cycle_index_series()
468
- sage: BT.exponential().isotype_generating_series()[:8] == BF.isotype_generating_series()[:8]
466
+ sage: BT = species.BinaryTreeSpecies().cycle_index_series() # optional - sage.modules
467
+ sage: BF = species.BinaryForestSpecies().cycle_index_series() # optional - sage.modules
468
+ sage: BT.exponential().isotype_generating_series()[:8] == BF.isotype_generating_series()[:8] # optional - sage.modules
469
469
True
470
470
"""
471
471
base_ring = self .parent ().base_ring ().base_ring ()
@@ -490,10 +490,10 @@ def logarithm(self):
490
490
Let `G` be the species of nonempty graphs and `CG` be the species of nonempty connected
491
491
graphs. Then `G = E^{+} \circ CG`, so `CG = \Omega \circ G`::
492
492
493
- sage: G = species.SimpleGraphSpecies().cycle_index_series() - 1
493
+ sage: G = species.SimpleGraphSpecies().cycle_index_series() - 1 # optional - sage.modules
494
494
sage: from sage.combinat.species.generating_series import LogarithmCycleIndexSeries
495
- sage: CG = LogarithmCycleIndexSeries()(G)
496
- sage: CG.isotype_generating_series()[0:8]
495
+ sage: CG = LogarithmCycleIndexSeries()(G) # optional - sage.modules
496
+ sage: CG.isotype_generating_series()[0:8] # optional - sage.modules
497
497
[0, 1, 1, 2, 6, 21, 112, 853]
498
498
"""
499
499
base_ring = self .parent ().base_ring ().base_ring ()
@@ -546,7 +546,7 @@ class CycleIndexSeriesRing(LazySymmetricFunctions):
546
546
547
547
We test to make sure that caching works::
548
548
549
- sage: R is CycleIndexSeriesRing(QQ)
549
+ sage: R is CycleIndexSeriesRing(QQ) # optional - sage.modules
550
550
True
551
551
"""
552
552
Element = CycleIndexSeries
0 commit comments