Skip to content

Commit c9b4b06

Browse files
author
Matthias Koeppe
committed
sage.combinat: More # optional
1 parent 20d4211 commit c9b4b06

File tree

6 files changed

+189
-188
lines changed

6 files changed

+189
-188
lines changed

src/sage/combinat/designs/bibd.py

Lines changed: 27 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
This module gathers everything related to Balanced Incomplete Block Designs. One can build a
55
BIBD (or check that it can be built) with :func:`balanced_incomplete_block_design`::
66
7-
sage: BIBD = designs.balanced_incomplete_block_design(7,3,1)
7+
sage: BIBD = designs.balanced_incomplete_block_design(7,3,1) # optional - sage.schemes
88
99
In particular, Sage can build a `(v,k,1)`-BIBD when one exists for all `k\leq
1010
5`. The following functions are available:
@@ -90,7 +90,7 @@ def biplane(n, existence=False):
9090
9191
sage: designs.biplane(4) # optional - sage.rings.finite_rings
9292
(16,6,2)-Balanced Incomplete Block Design
93-
sage: designs.biplane(7, existence=True)
93+
sage: designs.biplane(7, existence=True) # optional - sage.schemes
9494
True
9595
sage: designs.biplane(11)
9696
(79,13,2)-Balanced Incomplete Block Design
@@ -153,9 +153,10 @@ def balanced_incomplete_block_design(v, k, lambd=1, existence=False, use_LJCR=Fa
153153
154154
EXAMPLES::
155155
156-
sage: designs.balanced_incomplete_block_design(7, 3, 1).blocks()
156+
sage: designs.balanced_incomplete_block_design(7, 3, 1).blocks() # optional - sage.schemes
157157
[[0, 1, 3], [0, 2, 4], [0, 5, 6], [1, 2, 6], [1, 4, 5], [2, 3, 5], [3, 4, 6]]
158-
sage: B = designs.balanced_incomplete_block_design(66, 6, 1, use_LJCR=True) # optional - internet
158+
sage: B = designs.balanced_incomplete_block_design(66, 6, 1, # optional - internet
159+
....: use_LJCR=True)
159160
sage: B # optional - internet
160161
(66,6,1)-Balanced Incomplete Block Design
161162
sage: B.blocks() # optional - internet
@@ -387,33 +388,33 @@ def BruckRyserChowla_check(v, k, lambd):
387388
Nonexistence of projective planes of order 6 and 14
388389
389390
sage: from sage.combinat.designs.bibd import BruckRyserChowla_check
390-
sage: BruckRyserChowla_check(43,7,1)
391+
sage: BruckRyserChowla_check(43,7,1) # optional - sage.schemes
391392
False
392-
sage: BruckRyserChowla_check(211,15,1)
393+
sage: BruckRyserChowla_check(211,15,1) # optional - sage.schemes
393394
False
394395
395396
Existence of symmetric BIBDs with parameters `(79,13,2)` and `(56,11,2)`
396397
397398
sage: from sage.combinat.designs.bibd import BruckRyserChowla_check
398-
sage: BruckRyserChowla_check(79,13,2)
399+
sage: BruckRyserChowla_check(79,13,2) # optional - sage.schemes
399400
True
400-
sage: BruckRyserChowla_check(56,11,2)
401+
sage: BruckRyserChowla_check(56,11,2) # optional - sage.schemes
401402
True
402403
403404
TESTS:
404405
405406
Test some non-symmetric parameters::
406407
407408
sage: from sage.combinat.designs.bibd import BruckRyserChowla_check
408-
sage: BruckRyserChowla_check(89,11,3)
409+
sage: BruckRyserChowla_check(89,11,3) # optional - sage.schemes
409410
Unknown
410-
sage: BruckRyserChowla_check(25,23,2)
411+
sage: BruckRyserChowla_check(25,23,2) # optional - sage.schemes
411412
Unknown
412413
413414
Clearly wrong parameters satisfying the theorem::
414415
415416
sage: from sage.combinat.designs.bibd import BruckRyserChowla_check
416-
sage: BruckRyserChowla_check(13,25,50)
417+
sage: BruckRyserChowla_check(13,25,50) # optional - sage.schemes
417418
True
418419
419420
"""
@@ -569,9 +570,9 @@ def BIBD_from_TD(v,k,existence=False):
569570
First construction::
570571
571572
sage: from sage.combinat.designs.bibd import BIBD_from_TD
572-
sage: BIBD_from_TD(25,5,existence=True)
573+
sage: BIBD_from_TD(25,5,existence=True) # optional - sage.schemes
573574
True
574-
sage: _ = BlockDesign(25,BIBD_from_TD(25,5))
575+
sage: _ = BlockDesign(25,BIBD_from_TD(25,5)) # optional - sage.schemes
575576
576577
Second construction::
577578
@@ -866,8 +867,8 @@ def BIBD_from_PBD(PBD, v, k, check=True, base_cases=None):
866867
sage: from sage.combinat.designs.bibd import PBD_4_5_8_9_12
867868
sage: from sage.combinat.designs.bibd import BIBD_from_PBD
868869
sage: from sage.combinat.designs.bibd import is_pairwise_balanced_design
869-
sage: PBD = PBD_4_5_8_9_12(17)
870-
sage: bibd = is_pairwise_balanced_design(BIBD_from_PBD(PBD,52,4),52,[4])
870+
sage: PBD = PBD_4_5_8_9_12(17) # optional - sage.schemes
871+
sage: bibd = is_pairwise_balanced_design(BIBD_from_PBD(PBD,52,4),52,[4]) # optional - sage.schemes
871872
"""
872873
if base_cases is None:
873874
base_cases = {}
@@ -904,11 +905,11 @@ def _relabel_bibd(B,n,p=None):
904905
905906
- ``n`` (integer) -- number of points.
906907
907-
- ``p`` (optional) -- the point that will be labeled with n-1.
908+
- ``p`` (optional) -- the point that will be labeled with `n-1`.
908909
909910
EXAMPLES::
910911
911-
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest
912+
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest, optional - sage.schemes
912913
[[0, 1, 2, 12], [0, 3, 6, 9], [0, 4, 8, 10],
913914
[0, 5, 7, 11], [0, 13, 26, 39], [0, 14, 25, 28],
914915
[0, 15, 27, 38], [0, 16, 22, 32], [0, 17, 23, 34],
@@ -950,7 +951,7 @@ def PBD_4_5_8_9_12(v, check=True):
950951
951952
EXAMPLES::
952953
953-
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest
954+
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest, optional - sage.schemes
954955
[[0, 1, 2, 12], [0, 3, 6, 9], [0, 4, 8, 10],
955956
[0, 5, 7, 11], [0, 13, 26, 39], [0, 14, 25, 28],
956957
[0, 15, 27, 38], [0, 16, 22, 32], [0, 17, 23, 34],
@@ -1029,7 +1030,7 @@ def _PBD_4_5_8_9_12_closure(B):
10291030
10301031
EXAMPLES::
10311032
1032-
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest
1033+
sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest, optional - sage.schemes
10331034
[[0, 1, 2, 12], [0, 3, 6, 9], [0, 4, 8, 10],
10341035
[0, 5, 7, 11], [0, 13, 26, 39], [0, 14, 25, 28],
10351036
[0, 15, 27, 38], [0, 16, 22, 32], [0, 17, 23, 34],
@@ -1569,16 +1570,14 @@ def arc(self, s=2, solver=None, verbose=0, *, integrality_tolerance=1e-3):
15691570
15701571
EXAMPLES::
15711572
1572-
sage: B = designs.balanced_incomplete_block_design(21, 5)
1573-
sage: a2 = B.arc()
1574-
sage: a2 # random
1573+
sage: B = designs.balanced_incomplete_block_design(21, 5) # optional - sage.schemes
1574+
sage: a2 = B.arc(); a2 # random # optional - sage.schemes
15751575
[5, 9, 10, 12, 15, 20]
1576-
sage: len(a2)
1576+
sage: len(a2) # optional - sage.schemes
15771577
6
1578-
sage: a4 = B.arc(4)
1579-
sage: a4 # random
1578+
sage: a4 = B.arc(4); a4 # random # optional - sage.schemes
15801579
[0, 1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20]
1581-
sage: len(a4)
1580+
sage: len(a4) # optional - sage.schemes
15821581
16
15831582
15841583
The `2`-arc and `4`-arc above are maximal. One can check that they
@@ -1591,9 +1590,9 @@ def arc(self, s=2, solver=None, verbose=0, *, integrality_tolerance=1e-3):
15911590
sage: 1 + r*3
15921591
16
15931592
1594-
sage: B.trace(a2).is_t_design(2, return_parameters=True)
1593+
sage: B.trace(a2).is_t_design(2, return_parameters=True) # optional - sage.schemes
15951594
(True, (2, 6, 2, 1))
1596-
sage: B.trace(a4).is_t_design(2, return_parameters=True)
1595+
sage: B.trace(a4).is_t_design(2, return_parameters=True) # optional - sage.schemes
15971596
(True, (2, 16, 4, 1))
15981597
15991598
Some other examples which are not maximal::

0 commit comments

Comments
 (0)