@@ -901,10 +901,10 @@ def CremonaRichmondConfiguration():
901
901
902
902
EXAMPLES::
903
903
904
- sage: H = designs.CremonaRichmondConfiguration(); H # optional - networkx
904
+ sage: H = designs.CremonaRichmondConfiguration(); H # needs networkx
905
905
Incidence structure with 15 points and 15 blocks
906
- sage: g = graphs.TutteCoxeterGraph() # optional - networkx
907
- sage: H.incidence_graph().is_isomorphic(g) # optional - networkx
906
+ sage: g = graphs.TutteCoxeterGraph() # needs networkx
907
+ sage: H.incidence_graph().is_isomorphic(g) # needs networkx
908
908
True
909
909
"""
910
910
from sage .graphs .generators .smallgraphs import TutteCoxeterGraph
@@ -934,12 +934,13 @@ def WittDesign(n):
934
934
935
935
EXAMPLES::
936
936
937
- sage: BD = designs.WittDesign(9) # optional - gap_packages (design package)
938
- sage: BD.is_t_design(return_parameters=True) # optional - gap_packages (design package)
937
+ sage: # optional - gap_packages (design package)
938
+ sage: BD = designs.WittDesign(9)
939
+ sage: BD.is_t_design(return_parameters=True)
939
940
(True, (2, 9, 3, 1))
940
- sage: BD # optional - gap_packages (design package)
941
+ sage: BD
941
942
Incidence structure with 9 points and 12 blocks
942
- sage: print(BD) # optional - gap_packages (design package)
943
+ sage: print(BD)
943
944
Incidence structure with 9 points and 12 blocks
944
945
"""
945
946
libgap .load_package ("design" )
@@ -957,16 +958,16 @@ def HadamardDesign(n):
957
958
958
959
EXAMPLES::
959
960
960
- sage: designs.HadamardDesign(7) # optional - sage.modules
961
+ sage: designs.HadamardDesign(7) # needs sage.modules
961
962
Incidence structure with 7 points and 7 blocks
962
- sage: print(designs.HadamardDesign(7)) # optional - sage.modules
963
+ sage: print(designs.HadamardDesign(7)) # needs sage.modules
963
964
Incidence structure with 7 points and 7 blocks
964
965
965
966
For example, the Hadamard 2-design with `n = 11` is a design whose parameters are `2-(11, 5, 2)`.
966
967
We verify that `NJ = 5J` for this design. ::
967
968
968
- sage: D = designs.HadamardDesign(11); N = D.incidence_matrix() # optional - sage.modules
969
- sage: J = matrix(ZZ, 11, 11, [1]*11*11); N*J # optional - sage.modules
969
+ sage: D = designs.HadamardDesign(11); N = D.incidence_matrix() # needs sage.modules
970
+ sage: J = matrix(ZZ, 11, 11, [1]*11*11); N*J # needs sage.modules
970
971
[5 5 5 5 5 5 5 5 5 5 5]
971
972
[5 5 5 5 5 5 5 5 5 5 5]
972
973
[5 5 5 5 5 5 5 5 5 5 5]
@@ -1010,7 +1011,7 @@ def Hadamard3Design(n):
1010
1011
1011
1012
EXAMPLES::
1012
1013
1013
- sage: designs.Hadamard3Design(12) # optional - sage.modules
1014
+ sage: designs.Hadamard3Design(12) # needs sage.modules
1014
1015
Incidence structure with 12 points and 22 blocks
1015
1016
1016
1017
We verify that any two blocks of the Hadamard `3`-design `3-(8, 4, 1)`
@@ -1020,9 +1021,9 @@ def Hadamard3Design(n):
1020
1021
1021
1022
::
1022
1023
1023
- sage: D = designs.Hadamard3Design(8) # optional - sage.modules
1024
- sage: N = D.incidence_matrix() # optional - sage.modules
1025
- sage: N.transpose()*N # optional - sage.modules
1024
+ sage: D = designs.Hadamard3Design(8) # needs sage.modules
1025
+ sage: N = D.incidence_matrix() # needs sage.modules
1026
+ sage: N.transpose()*N # needs sage.modules
1026
1027
[4 2 2 2 2 2 2 2 2 2 2 2 2 0]
1027
1028
[2 4 2 2 2 2 2 2 2 2 2 2 0 2]
1028
1029
[2 2 4 2 2 2 2 2 2 2 2 0 2 2]
0 commit comments