@@ -4931,7 +4931,8 @@ def sigma_invariants(self, n, formal=False, embedding=None, type='point',
4931
4931
multiplier spectra, which includes the multipliers of all
4932
4932
periodic points of period ``n``
4933
4933
4934
- - ``embedding`` -- deprecated in :trac:`23333`
4934
+ - ``embedding`` -- (default: ``None``) must be ``None``, passing an embedding
4935
+ is no longer supported, see :trac: `32205`.
4935
4936
4936
4937
- ``type`` -- (default: ``'point'``) string; either ``'point'``
4937
4938
or ``'cycle'`` depending on whether you compute with one
@@ -5179,14 +5180,14 @@ def sigma_invariants(self, n, formal=False, embedding=None, type='point',
5179
5180
for correctly. try setting chow=True and/or deform=True
5180
5181
"""
5181
5182
n = ZZ (n )
5183
+
5184
+ if not embedding is None :
5185
+ raise ValueError ('do not specify an embedding' )
5182
5186
if n < 1 :
5183
5187
raise ValueError ("period must be a positive integer" )
5184
5188
dom = self .domain ()
5185
5189
if not is_ProjectiveSpace (dom ):
5186
5190
raise NotImplementedError ("not implemented for subschemes" )
5187
- if not embedding is None :
5188
- from sage .misc .superseded import deprecation
5189
- deprecation (23333 , "embedding keyword no longer used" )
5190
5191
if self .degree () <= 1 :
5191
5192
raise TypeError ("must have degree at least 2" )
5192
5193
if not type in ['point' , 'cycle' ]:
@@ -6397,72 +6398,6 @@ def all_periodic_points(self, **kwds):
6397
6398
else :
6398
6399
raise TypeError ("base field must be an absolute number field" )
6399
6400
6400
- def rational_periodic_points (self , ** kwds ):
6401
- r"""
6402
- Determine the set of rational periodic points
6403
- for this dynamical system.
6404
-
6405
- The map must be defined over `\QQ` and be an endomorphism of
6406
- projective space. If the map is a polynomial endomorphism of
6407
- `\mathbb{P}^1`, i.e. has a totally ramified fixed point, then
6408
- the base ring can be an absolute number field.
6409
- This is done by passing to the Weil restriction.
6410
-
6411
- The default parameter values are typically good choices for
6412
- `\mathbb{P}^1`. If you are having trouble getting a particular
6413
- map to finish, try first computing the possible periods, then
6414
- try various different ``lifting_prime`` values.
6415
-
6416
- ALGORITHM:
6417
-
6418
- Modulo each prime of good reduction `p` determine the set of
6419
- periodic points modulo `p`. For each cycle modulo `p` compute
6420
- the set of possible periods (`mrp^e`). Take the intersection
6421
- of the list of possible periods modulo several primes of good
6422
- reduction to get a possible list of minimal periods of rational
6423
- periodic points. Take each point modulo `p` associated to each
6424
- of these possible periods and try to lift it to a rational point
6425
- with a combination of `p`-adic approximation and the LLL basis
6426
- reduction algorithm.
6427
-
6428
- See [Hutz2015]_.
6429
-
6430
- INPUT:
6431
-
6432
- kwds:
6433
-
6434
- - ``prime_bound`` -- (default: ``[1,20]``) a pair (list or tuple)
6435
- of positive integers that represent the limits of primes to use
6436
- in the reduction step or an integer that represents the upper bound
6437
-
6438
- - ``lifting_prime`` -- (default: 23) a prime integer; argument that
6439
- specifies modulo which prime to try and perform the lifting
6440
-
6441
- - ``periods`` -- (optional) a list of positive integers that is
6442
- the list of possible periods
6443
-
6444
- - ``bad_primes`` -- (optional) a list or tuple of integer primes;
6445
- the primes of bad reduction
6446
-
6447
- - ``ncpus`` -- (default: all cpus) number of cpus to use in parallel
6448
-
6449
- OUTPUT: a list of rational points in projective space
6450
-
6451
- EXAMPLES::
6452
-
6453
- sage: R.<x> = QQ[]
6454
- sage: K.<w> = NumberField(x^2-x+1)
6455
- sage: P.<u,v> = ProjectiveSpace(K,1)
6456
- sage: f = DynamicalSystem_projective([u^2 + v^2,v^2])
6457
- sage: sorted(f.rational_periodic_points())
6458
- doctest:warning
6459
- ...
6460
- [(-w + 1 : 1), (w : 1), (1 : 0)]
6461
- """
6462
- from sage .misc .superseded import deprecation
6463
- deprecation (28109 , "use sage.dynamics.arithmetic_dynamics.projective_ds.all_periodic_points instead" )
6464
- return self .all_periodic_points (** kwds )
6465
-
6466
6401
def all_rational_preimages (self , points ):
6467
6402
r"""
6468
6403
Given a set of rational points in the domain of this
@@ -6546,74 +6481,6 @@ def all_rational_preimages(self, points):
6546
6481
preperiodic .add (preimages [i ])
6547
6482
return list (preperiodic )
6548
6483
6549
- def rational_preperiodic_points (self , ** kwds ):
6550
- r"""
6551
- Determine the set of rational preperiodic points for
6552
- this dynamical system.
6553
-
6554
- The map must be defined over `\QQ` and be an endomorphism of
6555
- projective space. If the map is a polynomial endomorphism of
6556
- `\mathbb{P}^1`, i.e. has a totally ramified fixed point, then
6557
- the base ring can be an absolute number field.
6558
- This is done by passing to the Weil restriction.
6559
-
6560
- The default parameter values are typically good choices for
6561
- `\mathbb{P}^1`. If you are having trouble getting a particular
6562
- map to finish, try first computing the possible periods, then
6563
- try various different values for ``lifting_prime``.
6564
-
6565
- ALGORITHM:
6566
-
6567
- - Determines the list of possible periods.
6568
-
6569
- - Determines the rational periodic points from the possible periods.
6570
-
6571
- - Determines the rational preperiodic points from the rational
6572
- periodic points by determining rational preimages.
6573
-
6574
- INPUT:
6575
-
6576
- kwds:
6577
-
6578
- - ``prime_bound`` -- (default: ``[1, 20]``) a pair (list or tuple)
6579
- of positive integers that represent the limits of primes to use
6580
- in the reduction step or an integer that represents the upper bound
6581
-
6582
- - ``lifting_prime`` -- (default: 23) a prime integer; specifies
6583
- modulo which prime to try and perform the lifting
6584
-
6585
- - ``periods`` -- (optional) a list of positive integers that is
6586
- the list of possible periods
6587
-
6588
- - ``bad_primes`` -- (optional) a list or tuple of integer primes;
6589
- the primes of bad reduction
6590
-
6591
- - ``ncpus`` -- (default: all cpus) number of cpus to use in parallel
6592
-
6593
- - ``period_degree_bounds`` -- (default: ``[4,4]``) a pair of positive integers
6594
- (max period, max degree) for which the dynatomic polynomial should be solved
6595
- for when in dimension 1
6596
-
6597
- - ``algorithm`` -- (optional) specifies which algorithm to use;
6598
- current options are `dynatomic` and `lifting`; defaults to solving the
6599
- dynatomic for low periods and degrees and lifts for everything else
6600
-
6601
- OUTPUT: a list of rational points in projective space
6602
-
6603
- EXAMPLES::
6604
-
6605
- sage: PS.<x,y> = ProjectiveSpace(1,QQ)
6606
- sage: f = DynamicalSystem_projective([x^2 -y^2, 3*x*y])
6607
- sage: sorted(f.rational_preperiodic_points())
6608
- doctest:warning
6609
- ...
6610
- [(-2 : 1), (-1 : 1), (-1/2 : 1), (0 : 1), (1/2 : 1), (1 : 0), (1 : 1),
6611
- (2 : 1)]
6612
- """
6613
- from sage .misc .superseded import deprecation
6614
- deprecation (28213 , "use sage.dynamics.arithmetic_dynamics.projective_ds.all_preperiodic_points instead" )
6615
- return self .all_preperiodic_points (** kwds )
6616
-
6617
6484
def all_preperiodic_points (self , ** kwds ):
6618
6485
r"""
6619
6486
Determine the set of rational preperiodic points for
0 commit comments