@@ -47,7 +47,7 @@ class FiniteField_prime_modn(FiniteField_generic, integer_mod_ring.IntegerModRin
47
47
sage: FiniteField(3)
48
48
Finite Field of size 3
49
49
50
- sage: FiniteField(next_prime(1000))
50
+ sage: FiniteField(next_prime(1000)) # optional - sage.rings.finite_rings
51
51
Finite Field of size 1009
52
52
"""
53
53
def __init__ (self , p , check = True , modulus = None ):
@@ -104,7 +104,7 @@ def _coerce_map_from_(self, S):
104
104
5
105
105
sage: 12 % 7
106
106
5
107
- sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319
107
+ sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319 # optional - sage.rings.finite_rings
108
108
1
109
109
sage: K.<w> = QuadraticField(337) # See trac 11319
110
110
sage: pp = K.ideal(13).factor()[0][0]
@@ -117,12 +117,12 @@ def _coerce_map_from_(self, S):
117
117
118
118
Check that :trac:`19573` is resolved::
119
119
120
- sage: Integers(9).hom(GF(3))
120
+ sage: Integers(9).hom(GF(3)) # optional - sage.rings.finite_rings
121
121
Natural morphism:
122
122
From: Ring of integers modulo 9
123
123
To: Finite Field of size 3
124
124
125
- sage: Integers(9).hom(GF(5))
125
+ sage: Integers(9).hom(GF(5)) # optional - sage.rings.finite_rings
126
126
Traceback (most recent call last):
127
127
...
128
128
TypeError: natural coercion morphism from Ring of integers modulo 9 to Finite Field of size 5 not defined
@@ -201,7 +201,7 @@ def is_prime_field(self):
201
201
sage: k.is_prime_field()
202
202
True
203
203
204
- sage: k.<a> = GF(3^2)
204
+ sage: k.<a> = GF(3^2) # optional - sage.rings.finite_rings
205
205
sage: k.is_prime_field()
206
206
False
207
207
"""
@@ -271,7 +271,7 @@ def gen(self, n=0):
271
271
sage: k = GF(13)
272
272
sage: k.gen()
273
273
1
274
- sage: k = GF(1009, modulus="primitive")
274
+ sage: k = GF(1009, modulus="primitive") # optional - sage.rings.finite_rings
275
275
sage: k.gen() # this gives a primitive element
276
276
11
277
277
sage: k.gen(1)
@@ -304,7 +304,7 @@ def __iter__(self):
304
304
We can even start iterating over something that would be too big
305
305
to actually enumerate::
306
306
307
- sage: K = GF(next_prime(2^256))
307
+ sage: K = GF(next_prime(2^256)) # optional - sage.rings.finite_rings
308
308
sage: all = iter(K)
309
309
sage: next(all)
310
310
0
0 commit comments