Skip to content

Commit d1f5704

Browse files
author
Matthias Koeppe
committed
sage.rings.finite_rings: More # optional
1 parent 97b5398 commit d1f5704

File tree

4 files changed

+94
-94
lines changed

4 files changed

+94
-94
lines changed

src/sage/rings/finite_rings/finite_field_prime_modn.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ class FiniteField_prime_modn(FiniteField_generic, integer_mod_ring.IntegerModRin
4747
sage: FiniteField(3)
4848
Finite Field of size 3
4949
50-
sage: FiniteField(next_prime(1000))
50+
sage: FiniteField(next_prime(1000)) # optional - sage.rings.finite_rings
5151
Finite Field of size 1009
5252
"""
5353
def __init__(self, p, check=True, modulus=None):
@@ -104,7 +104,7 @@ def _coerce_map_from_(self, S):
104104
5
105105
sage: 12 % 7
106106
5
107-
sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319
107+
sage: ZZ.residue_field(7).hom(GF(7))(1) # See trac 11319 # optional - sage.rings.finite_rings
108108
1
109109
sage: K.<w> = QuadraticField(337) # See trac 11319
110110
sage: pp = K.ideal(13).factor()[0][0]
@@ -117,12 +117,12 @@ def _coerce_map_from_(self, S):
117117
118118
Check that :trac:`19573` is resolved::
119119
120-
sage: Integers(9).hom(GF(3))
120+
sage: Integers(9).hom(GF(3)) # optional - sage.rings.finite_rings
121121
Natural morphism:
122122
From: Ring of integers modulo 9
123123
To: Finite Field of size 3
124124
125-
sage: Integers(9).hom(GF(5))
125+
sage: Integers(9).hom(GF(5)) # optional - sage.rings.finite_rings
126126
Traceback (most recent call last):
127127
...
128128
TypeError: natural coercion morphism from Ring of integers modulo 9 to Finite Field of size 5 not defined
@@ -201,7 +201,7 @@ def is_prime_field(self):
201201
sage: k.is_prime_field()
202202
True
203203
204-
sage: k.<a> = GF(3^2)
204+
sage: k.<a> = GF(3^2) # optional - sage.rings.finite_rings
205205
sage: k.is_prime_field()
206206
False
207207
"""
@@ -271,7 +271,7 @@ def gen(self, n=0):
271271
sage: k = GF(13)
272272
sage: k.gen()
273273
1
274-
sage: k = GF(1009, modulus="primitive")
274+
sage: k = GF(1009, modulus="primitive") # optional - sage.rings.finite_rings
275275
sage: k.gen() # this gives a primitive element
276276
11
277277
sage: k.gen(1)
@@ -304,7 +304,7 @@ def __iter__(self):
304304
We can even start iterating over something that would be too big
305305
to actually enumerate::
306306
307-
sage: K = GF(next_prime(2^256))
307+
sage: K = GF(next_prime(2^256)) # optional - sage.rings.finite_rings
308308
sage: all = iter(K)
309309
sage: next(all)
310310
0

0 commit comments

Comments
 (0)