@@ -1525,7 +1525,7 @@ def rule(x):
1525
1525
return BranchingRule (Rtype , Stype , lambda x : [(x [4 ]- 3 * x [5 ])/ 2 ,(x [0 ]+ x [1 ]+ x [2 ]+ x [3 ])/ 2 ,(- x [0 ]- x [1 ]+ x [2 ]+ x [3 ])/ 2 ,(- x [0 ]+ x [1 ]- x [2 ]+ x [3 ])/ 2 ], "symmetric" )
1526
1526
elif Rtype == CartanType ("E6" ) and Stype == CartanType ("C4" ):
1527
1527
def f (x ):
1528
- [ x0 , x1 , x2 , x3 , x4 , x5 ] = x [:6 ]
1528
+ x0 , x1 , x2 , x3 , x4 , x5 = x [:6 ]
1529
1529
return [(x0 + x1 + x2 + x3 + x4 - 3 * x5 )/ 2 ,
1530
1530
(- x0 - x1 - x2 - x3 + x4 - 3 * x5 )/ 2 ,
1531
1531
- x0 + x3 , - x1 + x2 ]
@@ -1712,12 +1712,12 @@ def br(x):
1712
1712
return BranchingRule (Rtype , Stype , lambda x : x , "isomorphic" )
1713
1713
elif Rtype == CartanType ("B2" ) and Stype == CartanType ("C2" ):
1714
1714
def rule (x ):
1715
- [ x1 , x2 ] = x
1715
+ x1 , x2 = x
1716
1716
return [x1 + x2 , x1 - x2 ]
1717
1717
return BranchingRule (Rtype , Stype , rule , "isomorphic" )
1718
1718
elif Rtype == CartanType ("C2" ) and Stype == CartanType ("B2" ):
1719
1719
def rule (x ):
1720
- [ x1 , x2 ] = x
1720
+ x1 , x2 = x
1721
1721
return [(x1 + x2 ) / 2 , (x1 - x2 ) / 2 ]
1722
1722
return BranchingRule (Rtype , Stype , rule , "isomorphic" )
1723
1723
elif Rtype == CartanType ("B1" ) and Stype == CartanType ("A1" ):
@@ -1730,18 +1730,18 @@ def rule(x):
1730
1730
return BranchingRule (Rtype , Stype , lambda x : [x [0 ]- x [1 ]], "isomorphic" )
1731
1731
elif Rtype == CartanType ("A3" ) and Stype == CartanType ("D3" ):
1732
1732
def rule (x ):
1733
- [ x1 , x2 , x3 , x4 ] = x
1733
+ x1 , x2 , x3 , x4 = x
1734
1734
return [(x1 + x2 - x3 - x4 )/ 2 , (x1 - x2 + x3 - x4 )/ 2 , (x1 - x2 - x3 + x4 )/ 2 ]
1735
1735
return BranchingRule (Rtype , Stype , rule , "isomorphic" )
1736
1736
elif Rtype == CartanType ("D3" ) and Stype == CartanType ("A3" ):
1737
1737
def rule (x ):
1738
- [ t1 , t2 , t3 ] = x
1738
+ t1 , t2 , t3 = x
1739
1739
return [(t1 + t2 + t3 )/ 2 , (t1 - t2 - t3 )/ 2 ,
1740
1740
(- t1 + t2 - t3 )/ 2 , (- t1 - t2 + t3 )/ 2 ]
1741
1741
return BranchingRule (Rtype , Stype , rule , "isomorphic" )
1742
1742
elif Rtype == CartanType ("D2" ) and Stype == CartanType ("A1xA1" ):
1743
1743
def rule (x ):
1744
- [ t1 , t2 ] = x
1744
+ t1 , t2 = x
1745
1745
return [(t1 - t2 )/ 2 , - (t1 - t2 )/ 2 , (t1 + t2 )/ 2 , - (t1 + t2 )/ 2 ]
1746
1746
return BranchingRule (Rtype , Stype , rule , "isomorphic" )
1747
1747
else :
@@ -1759,7 +1759,7 @@ def rule(x):
1759
1759
nr = 2 * Rtype [1 ]
1760
1760
else :
1761
1761
raise ValueError ("Rule not found" )
1762
- [ s1 , s2 ] = [stypes [i ][1 ] for i in range (2 )]
1762
+ s1 , s2 = [stypes [i ][1 ] for i in range (2 )]
1763
1763
ns = [s1 , s2 ]
1764
1764
for i in range (2 ):
1765
1765
if stypes [i ][0 ] == 'A' :
@@ -1860,14 +1860,14 @@ def rule(x):
1860
1860
return BranchingRule (Rtype , Stype , lambda x : [x [1 ]+ x [3 ],x [2 ]- x [3 ],- x [1 ]- x [2 ],- 2 * x [6 ],x [4 ]+ x [5 ],- x [4 ]+ x [5 ]], "miscellaneous" )
1861
1861
elif stypes == [CartanType ("F4" ), CartanType ("A1" )]:
1862
1862
def f (x ):
1863
- [ x0 , x1 , x2 , x3 , x4 , x5 , x6 ] = x [:7 ]
1863
+ x0 , x1 , x2 , x3 , x4 , x5 , x6 = x [:7 ]
1864
1864
return [(x4 - x5 )/ 2 - x6 , (x0 + x1 + x2 + x3 )/ 2 ,
1865
1865
(- x0 - x1 + x2 + x3 )/ 2 , (- x0 + x1 - x2 + x3 )/ 2 ,
1866
1866
x5 - x6 , x6 - x5 ]
1867
1867
return BranchingRule (Rtype , Stype , f , "miscellaneous" )
1868
1868
elif stypes == [CartanType ("A1" ), CartanType ("F4" )]:
1869
1869
def f (x ):
1870
- [ x0 , x1 , x2 , x3 , x4 , x5 , x6 ] = x [:7 ]
1870
+ x0 , x1 , x2 , x3 , x4 , x5 , x6 = x [:7 ]
1871
1871
return [x5 - x6 , x6 - x5 , (x4 - x5 )/ 2 - x6 ,
1872
1872
(x0 + x1 + x2 + x3 )/ 2 ,
1873
1873
(- x0 - x1 + x2 + x3 )/ 2 ,
@@ -2289,7 +2289,7 @@ def maximal_subgroups(ct, mode='print_rules'):
2289
2289
elif mode == "get_rule" :
2290
2290
d = {}
2291
2291
for line in rul :
2292
- [ k , br ] = line .split (":" )
2292
+ k , br = line .split (":" )
2293
2293
br = eval (br )
2294
2294
if k in d :
2295
2295
if not isinstance (d [k ], list ):
0 commit comments