|
60 | 60 | # https://www.gnu.org/licenses/ |
61 | 61 | # **************************************************************************** |
62 | 62 |
|
63 | | -from sage.rings.ring import IntegralDomain |
64 | 63 | import sage.rings.fraction_field_element as fraction_field_element |
65 | 64 |
|
66 | 65 | from sage.rings.polynomial.multi_polynomial_ring_base import MPolynomialRing_base, is_MPolynomialRing |
67 | 66 | from sage.rings.polynomial.polynomial_singular_interface import PolynomialRing_singular_repr |
68 | 67 | from sage.rings.polynomial.polydict import PolyDict, ETuple |
69 | 68 | from sage.rings.polynomial.term_order import TermOrder |
70 | | - |
71 | 69 | import sage.interfaces.abc |
72 | 70 |
|
73 | 71 | try: |
@@ -558,9 +556,9 @@ def __call__(self, x=0, check=True): |
558 | 556 | c = self.base_ring()(x) |
559 | 557 | return MPolynomial_polydict(self, {self._zero_tuple: c}) |
560 | 558 |
|
561 | | -# The following methods are handy for implementing Groebner |
562 | | -# basis algorithms. They do only superficial type/sanity checks |
563 | | -# and should be called carefully. |
| 559 | + # The following methods are handy for implementing Groebner |
| 560 | + # basis algorithms. They do only superficial type/sanity checks |
| 561 | + # and should be called carefully. |
564 | 562 |
|
565 | 563 | def monomial_quotient(self, f, g, coeff=False): |
566 | 564 | r""" |
@@ -930,21 +928,17 @@ def sum(self, terms): |
930 | 928 | elt = PolyDict({}, check=False) |
931 | 929 | for t in terms: |
932 | 930 | elt += self(t).element() |
933 | | - # NOTE: here we should be using self.element_class but polynomial rings are not complient |
934 | | - # with categories... |
| 931 | + # NOTE: here we should be using self.element_class but |
| 932 | + # polynomial rings are not complient with categories... |
935 | 933 | from sage.rings.polynomial.multi_polynomial_element import MPolynomial_polydict |
936 | 934 | return MPolynomial_polydict(self, elt) |
937 | 935 |
|
938 | 936 |
|
939 | | -class MPolynomialRing_polydict_domain(IntegralDomain, |
940 | | - MPolynomialRing_polydict): |
| 937 | +class MPolynomialRing_polydict_domain(MPolynomialRing_polydict): |
941 | 938 | def __init__(self, base_ring, n, names, order): |
942 | 939 | order = TermOrder(order, n) |
943 | 940 | MPolynomialRing_polydict.__init__(self, base_ring, n, names, order) |
944 | 941 |
|
945 | | - def is_integral_domain(self, proof=True): |
946 | | - return True |
947 | | - |
948 | 942 | def is_field(self, proof=True): |
949 | 943 | if self.ngens() == 0: |
950 | 944 | return self.base_ring().is_field(proof) |
|
0 commit comments