@@ -1349,7 +1349,7 @@ def ngens(self):
1349
1349
"""
1350
1350
return len (self .gens ())
1351
1351
1352
- def is_trivial (self ):
1352
+ def is_trivial (self ) -> bool :
1353
1353
r"""
1354
1354
Return ``True`` if this group is the trivial group.
1355
1355
@@ -4215,7 +4215,7 @@ def maximal_normal_subgroups(self):
4215
4215
4216
4216
# ##################### Boolean tests #####################
4217
4217
4218
- def is_abelian (self ):
4218
+ def is_abelian (self ) -> bool :
4219
4219
"""
4220
4220
Return ``True`` if this group is abelian.
4221
4221
@@ -4230,7 +4230,7 @@ def is_abelian(self):
4230
4230
"""
4231
4231
return bool (self ._libgap_ ().IsAbelian ())
4232
4232
4233
- def is_commutative (self ):
4233
+ def is_commutative (self ) -> bool :
4234
4234
"""
4235
4235
Return ``True`` if this group is commutative.
4236
4236
@@ -4245,7 +4245,7 @@ def is_commutative(self):
4245
4245
"""
4246
4246
return self .is_abelian ()
4247
4247
4248
- def is_cyclic (self ):
4248
+ def is_cyclic (self ) -> bool :
4249
4249
"""
4250
4250
Return ``True`` if this group is cyclic.
4251
4251
@@ -4357,7 +4357,7 @@ def is_isomorphic(self, right):
4357
4357
iso = self ._libgap_ ().IsomorphismGroups (right )
4358
4358
return str (iso ) != 'fail'
4359
4359
4360
- def is_monomial (self ):
4360
+ def is_monomial (self ) -> bool :
4361
4361
"""
4362
4362
Return ``True`` if the group is monomial. A finite group is monomial
4363
4363
if every irreducible complex character is induced from a linear
@@ -4371,7 +4371,7 @@ def is_monomial(self):
4371
4371
"""
4372
4372
return bool (self ._libgap_ ().IsMonomialGroup ())
4373
4373
4374
- def is_nilpotent (self ):
4374
+ def is_nilpotent (self ) -> bool :
4375
4375
"""
4376
4376
Return ``True`` if this group is nilpotent.
4377
4377
@@ -4386,7 +4386,7 @@ def is_nilpotent(self):
4386
4386
"""
4387
4387
return bool (self ._libgap_ ().IsNilpotent ())
4388
4388
4389
- def is_normal (self , other ):
4389
+ def is_normal (self , other ) -> bool :
4390
4390
"""
4391
4391
Return ``True`` if this group is a normal subgroup of ``other``.
4392
4392
@@ -4403,7 +4403,7 @@ def is_normal(self, other):
4403
4403
raise TypeError ("%s must be a subgroup of %s" % (self , other ))
4404
4404
return bool (other ._libgap_ ().IsNormal (self ))
4405
4405
4406
- def is_perfect (self ):
4406
+ def is_perfect (self ) -> bool :
4407
4407
"""
4408
4408
Return ``True`` if this group is perfect. A group is perfect if it
4409
4409
equals its derived subgroup.
@@ -4419,7 +4419,7 @@ def is_perfect(self):
4419
4419
"""
4420
4420
return bool (self ._libgap_ ().IsPerfectGroup ())
4421
4421
4422
- def is_pgroup (self ):
4422
+ def is_pgroup (self ) -> bools :
4423
4423
r"""
4424
4424
Return ``True`` if this group is a `p`-group.
4425
4425
@@ -4434,7 +4434,7 @@ def is_pgroup(self):
4434
4434
"""
4435
4435
return bool (self ._libgap_ ().IsPGroup ())
4436
4436
4437
- def is_polycyclic (self ):
4437
+ def is_polycyclic (self ) -> bool :
4438
4438
r"""
4439
4439
Return ``True`` if this group is polycyclic. A group is polycyclic if
4440
4440
it has a subnormal series with cyclic factors. (For finite groups,
@@ -4452,7 +4452,7 @@ def is_polycyclic(self):
4452
4452
"""
4453
4453
return bool (self ._libgap_ ().IsPolycyclicGroup ())
4454
4454
4455
- def is_simple (self ):
4455
+ def is_simple (self ) -> bool :
4456
4456
"""
4457
4457
Return ``True`` if the group is simple.
4458
4458
0 commit comments