Skip to content

Commit d8a7bab

Browse files
committed
change verbosity in matrix2
1 parent 3dd953c commit d8a7bab

File tree

1 file changed

+47
-45
lines changed

1 file changed

+47
-45
lines changed

src/sage/matrix/matrix2.pyx

Lines changed: 47 additions & 45 deletions
Original file line numberDiff line numberDiff line change
@@ -3525,7 +3525,8 @@ cdef class Matrix(Matrix1):
35253525
cdef Py_ssize_t i, j, m, n, r
35263526
n = self._nrows
35273527

3528-
tm = verbose("Computing Hessenberg Normal Form of %sx%s matrix"%(n, n))
3528+
tm = verbose(f"Computing Hessenberg Normal Form of {n}x{n} matrix",
3529+
level=2)
35293530

35303531
if not self.is_square():
35313532
raise TypeError("self must be square")
@@ -3576,7 +3577,8 @@ cdef class Matrix(Matrix1):
35763577
# column m, and we're only worried about column m-1 right now.
35773578
# Add u*column_j to column_m.
35783579
self.add_multiple_of_column_c(m, j, u, 0)
3579-
verbose("Finished Hessenberg Normal Form of %sx%s matrix"%(n, n), tm)
3580+
verbose(f"Finished Hessenberg Normal Form of {n}x{n} matrix",
3581+
level=2, t=tm)
35803582

35813583
def _charpoly_hessenberg(self, var):
35823584
"""
@@ -3769,12 +3771,12 @@ cdef class Matrix(Matrix1):
37693771
[0 0 1]
37703772
"""
37713773
from sage.matrix.matrix_space import MatrixSpace
3772-
tm = verbose("computing right kernel matrix over a number field for %sx%s matrix" % (self.nrows(), self.ncols()), level=1)
3774+
tm = verbose("computing right kernel matrix over a number field for %sx%s matrix" % (self.nrows(), self.ncols()), level=2)
37733775
basis = self.__pari__().matker()
37743776
# Coerce PARI representations into the number field
37753777
R = self.base_ring()
37763778
basis = [[R(x) for x in row] for row in basis]
3777-
verbose("done computing right kernel matrix over a number field for %sx%s matrix" % (self.nrows(), self.ncols()), level=1, t=tm)
3779+
verbose("done computing right kernel matrix over a number field for %sx%s matrix" % (self.nrows(), self.ncols()), level=2, t=tm)
37783780
return 'pivot-pari-numberfield', MatrixSpace(R, len(basis), ncols=self._ncols)(basis)
37793781

37803782
def _right_kernel_matrix_over_field(self, *args, **kwds):
@@ -3828,7 +3830,7 @@ cdef class Matrix(Matrix1):
38283830
[0 0 1]
38293831
"""
38303832
from sage.matrix.matrix_space import MatrixSpace
3831-
tm = verbose("computing right kernel matrix over an arbitrary field for %sx%s matrix" % (self.nrows(), self.ncols()), level=1)
3833+
tm = verbose("computing right kernel matrix over an arbitrary field for %sx%s matrix" % (self.nrows(), self.ncols()), level=2)
38323834
E = self.echelon_form(*args, **kwds)
38333835
pivots = E.pivots()
38343836
pivots_set = set(pivots)
@@ -3857,7 +3859,7 @@ cdef class Matrix(Matrix1):
38573859
basis.append(v)
38583860
M = MS(basis, coerce=False)
38593861
tm = verbose("done computing right kernel matrix over an arbitrary field for %sx%s matrix"
3860-
% (self.nrows(), self.ncols()), level=1, t=tm)
3862+
% (self.nrows(), self.ncols()), level=2, t=tm)
38613863
return 'pivot-generic', M
38623864

38633865
def _right_kernel_matrix_over_domain(self):
@@ -3915,15 +3917,15 @@ cdef class Matrix(Matrix1):
39153917
[0 0 1]
39163918
"""
39173919
tm = verbose("computing right kernel matrix over a domain for %sx%s matrix"
3918-
% (self.nrows(), self.ncols()), level=1)
3920+
% (self.nrows(), self.ncols()), level=2)
39193921
d, _, v = self.smith_form()
39203922
basis = []
39213923
cdef Py_ssize_t i, nrows = self._nrows
39223924
for i in range(self._ncols):
39233925
if i >= nrows or d[i, i] == 0:
39243926
basis.append(v.column(i))
39253927
verbose("done computing right kernel matrix over a domain for %sx%s matrix"
3926-
% (self.nrows(), self.ncols()), level=1, t=tm)
3928+
% (self.nrows(), self.ncols()), level=2, t=tm)
39273929
return 'computed-smith-form', self.new_matrix(nrows=len(basis), ncols=self._ncols, entries=basis)
39283930

39293931
def _right_kernel_matrix_over_integer_mod_ring(self):
@@ -4077,16 +4079,16 @@ cdef class Matrix(Matrix1):
40774079
....: sparse=False)
40784080
sage: B = copy(A).sparse_matrix()
40794081
sage: from sage.misc.verbose import set_verbose
4080-
sage: set_verbose(1)
4082+
sage: set_verbose(2)
40814083
sage: D = A.right_kernel(); D
4082-
verbose 1 (<module>) computing a right kernel for 4x5 matrix over Rational Field
4084+
verbose 2 (<module>) computing a right kernel for 4x5 matrix over Rational Field
40834085
...
40844086
Vector space of degree 5 and dimension 2 over Rational Field
40854087
Basis matrix:
40864088
[ 1 0 1 1/2 -1/2]
40874089
[ 0 1 -1/2 -1/4 -1/4]
40884090
sage: S = B.right_kernel(); S
4089-
verbose 1 (<module>) computing a right kernel for 4x5 matrix over Rational Field
4091+
verbose 2 (<module>) computing a right kernel for 4x5 matrix over Rational Field
40904092
...
40914093
Vector space of degree 5 and dimension 2 over Rational Field
40924094
Basis matrix:
@@ -4145,11 +4147,11 @@ cdef class Matrix(Matrix1):
41454147
sage: Q = QuadraticField(-7)
41464148
sage: a = Q.gen(0)
41474149
sage: A = matrix(Q, [[2, 5-a, 15-a, 16+4*a], [2+a, a, -7 + 5*a, -3+3*a]])
4148-
sage: set_verbose(1)
4150+
sage: set_verbose(2)
41494151
sage: A.right_kernel(algorithm='default')
41504152
verbose ...
4151-
verbose 1 (<module>) computing right kernel matrix over a number field for 2x4 matrix
4152-
verbose 1 (<module>) done computing right kernel matrix over a number field for 2x4 matrix
4153+
verbose 2 (<module>) computing right kernel matrix over a number field for 2x4 matrix
4154+
verbose 2 (<module>) done computing right kernel matrix over a number field for 2x4 matrix
41534155
...
41544156
Vector space of degree 4 and dimension 2 over
41554157
Number Field in a with defining polynomial x^2 + 7 with a = 2.645751311064591?*I
@@ -4209,11 +4211,11 @@ cdef class Matrix(Matrix1):
42094211
sage: A = matrix(GF(2), [[0, 1, 1, 0, 0, 0],
42104212
....: [1, 0, 0, 0, 1, 1,],
42114213
....: [1, 0, 0, 0, 1, 1]])
4212-
sage: set_verbose(1)
4214+
sage: set_verbose(2)
42134215
sage: A.right_kernel(algorithm='default')
42144216
verbose ...
4215-
verbose 1 (<module>) computing right kernel matrix over integers mod 2 for 3x6 matrix
4216-
verbose 1 (<module>) done computing right kernel matrix over integers mod 2 for 3x6 matrix
4217+
verbose ... (<module>) computing right kernel matrix over integers mod 2 for 3x6 matrix
4218+
verbose ... (<module>) done computing right kernel matrix over integers mod 2 for 3x6 matrix
42174219
...
42184220
Vector space of degree 6 and dimension 4 over Finite Field of size 2
42194221
Basis matrix:
@@ -4274,10 +4276,10 @@ cdef class Matrix(Matrix1):
42744276
sage: A = matrix(F, 3, 4, [[ 1, a, 1+a, a^3+a^5],
42754277
....: [ a, a^4, a+a^4, a^4+a^8],
42764278
....: [a^2, a^6, a^2+a^6, a^5+a^10]])
4277-
sage: set_verbose(1)
4279+
sage: set_verbose(2)
42784280
sage: A.right_kernel(algorithm='default')
42794281
verbose ...
4280-
verbose 1 (<module>) computing right kernel matrix over an arbitrary field for 3x4 matrix
4282+
verbose 2 (<module>) computing right kernel matrix over an arbitrary field for 3x4 matrix
42814283
...
42824284
Vector space of degree 4 and dimension 2 over Finite Field in a of size 5^2
42834285
Basis matrix:
@@ -4339,23 +4341,23 @@ cdef class Matrix(Matrix1):
43394341
....: [0, 3, 1, 2, 3, 6, 2]],
43404342
....: sparse=False)
43414343
sage: B = copy(A).sparse_matrix()
4342-
sage: set_verbose(1)
4344+
sage: set_verbose(2)
43434345
sage: D = A.right_kernel(); D
4344-
verbose 1 (<module>) computing a right kernel for 4x7 matrix over Integer Ring
4345-
verbose 1 (<module>) computing right kernel matrix over the integers for 4x7 matrix
4346+
verbose ... (<module>) computing a right kernel for 4x7 matrix over Integer Ring
4347+
verbose ... (<module>) computing right kernel matrix over the integers for 4x7 matrix
43464348
...
4347-
verbose 1 (<module>) done computing right kernel matrix over the integers for 4x7 matrix
4349+
verbose ... (<module>) done computing right kernel matrix over the integers for 4x7 matrix
43484350
...
43494351
Free module of degree 7 and rank 3 over Integer Ring
43504352
Echelon basis matrix:
43514353
[ 1 12 3 14 -3 -10 1]
43524354
[ 0 35 0 25 -1 -31 17]
43534355
[ 0 0 7 12 -3 -1 -8]
43544356
sage: S = B.right_kernel(); S
4355-
verbose 1 (<module>) computing a right kernel for 4x7 matrix over Integer Ring
4356-
verbose 1 (<module>) computing right kernel matrix over the integers for 4x7 matrix
4357+
verbose ... (<module>) computing a right kernel for 4x7 matrix over Integer Ring
4358+
verbose ... (<module>) computing right kernel matrix over the integers for 4x7 matrix
43574359
...
4358-
verbose 1 (<module>) done computing right kernel matrix over the integers for 4x7 matrix
4360+
verbose ... (<module>) done computing right kernel matrix over the integers for 4x7 matrix
43594361
...
43604362
Free module of degree 7 and rank 3 over Integer Ring
43614363
Echelon basis matrix:
@@ -4399,11 +4401,11 @@ cdef class Matrix(Matrix1):
43994401
sage: R.<y> = QQ[]
44004402
sage: A = matrix(R, [[ 1, y, 1+y^2],
44014403
....: [y^3, y^2, 2*y^3]])
4402-
sage: set_verbose(1)
4404+
sage: set_verbose(2)
44034405
sage: A.right_kernel(algorithm='default', basis='echelon')
44044406
verbose ...
4405-
verbose 1 (<module>) computing right kernel matrix over a domain for 2x3 matrix
4406-
verbose 1 (<module>) done computing right kernel matrix over a domain for 2x3 matrix
4407+
verbose 2 (<module>) computing right kernel matrix over a domain for 2x3 matrix
4408+
verbose 2 (<module>) done computing right kernel matrix over a domain for 2x3 matrix
44074409
...
44084410
Free module of degree 3 and rank 1 over
44094411
Univariate Polynomial Ring in y over Rational Field
@@ -4988,7 +4990,7 @@ cdef class Matrix(Matrix1):
49884990
return K
49894991

49904992
R = self.base_ring()
4991-
tm = verbose(lazy_string("computing a right kernel for %sx%s matrix over %s", self.nrows(), self.ncols(), R), level=1)
4993+
tm = verbose(lazy_string("computing a right kernel for %sx%s matrix over %s", self.nrows(), self.ncols(), R), level=2)
49924994

49934995
# Sanitize basis format
49944996
# 'computed' is OK in right_kernel_matrix(), but not here
@@ -5010,7 +5012,7 @@ cdef class Matrix(Matrix1):
50105012
else:
50115013
K = ambient.submodule_with_basis(M.rows(), already_echelonized=False, check=False)
50125014

5013-
verbose(lazy_string("done computing a right kernel for %sx%s matrix over %s", self.nrows(), self.ncols(), R), level=1, t=tm)
5015+
verbose(lazy_string("done computing a right kernel for %sx%s matrix over %s", self.nrows(), self.ncols(), R), level=2, t=tm)
50145016
self.cache('right_kernel', K)
50155017
return K
50165018

@@ -5162,10 +5164,10 @@ cdef class Matrix(Matrix1):
51625164
if K is not None:
51635165
return K
51645166

5165-
tm = verbose("computing left kernel for %sx%s matrix" % (self.nrows(), self.ncols()), level=1)
5167+
tm = verbose("computing left kernel for %sx%s matrix" % (self.nrows(), self.ncols()), level=2)
51665168
K = self.transpose().right_kernel(*args, **kwds)
51675169
self.cache('left_kernel', K)
5168-
verbose("done computing left kernel for %sx%s matrix" % (self.nrows(), self.ncols()), level=1, t=tm)
5170+
verbose("done computing left kernel for %sx%s matrix" % (self.nrows(), self.ncols()), level=2, t=tm)
51695171
return K
51705172

51715173
kernel = left_kernel
@@ -5680,7 +5682,7 @@ cdef class Matrix(Matrix1):
56805682
B = g(self)
56815683
t2 = verbose('decomposition -- raising g(self) to the power %s'%m, level=2)
56825684
B = B ** m
5683-
verbose('done powering', t2)
5685+
verbose('done powering', level=2, t=t2)
56845686
t = verbose('decomposition -- done computing g(self)', level=2, t=t)
56855687
E.append((B.kernel(), m==1))
56865688
t = verbose('decomposition -- time to compute kernel', level=2, t=t)
@@ -5772,11 +5774,11 @@ cdef class Matrix(Matrix1):
57725774
if M.degree() != self.ncols():
57735775
raise ArithmeticError("M must be a subspace of an %s-dimensional space" % self.ncols())
57745776

5775-
time = verbose(t=0)
5777+
time = verbose(level=2, t=0)
57765778

57775779
# 1. Restrict
57785780
B = self.restrict(M, check=check_restrict)
5779-
time0 = verbose("decompose restriction -- ", time)
5781+
time0 = verbose("decompose restriction -- ", level=2, t=time)
57805782

57815783
# 2. Decompose restriction
57825784
D = B.decomposition(**kwds)
@@ -5791,13 +5793,13 @@ cdef class Matrix(Matrix1):
57915793
# combination of the basis of W, and these linear combinations
57925794
# define the corresponding subspaces of the ambient space M.
57935795

5794-
verbose("decomposition -- ", time0)
5796+
verbose("decomposition -- ", level=2, t=time0)
57955797
C = M.basis_matrix()
57965798

57975799
D = [((W.basis_matrix() * C).row_module(self.base_ring()), is_irred) for W, is_irred in D]
57985800
D = decomp_seq(D)
57995801

5800-
verbose(t=time)
5802+
verbose(level=2, t=time)
58015803
return D
58025804

58035805
def restrict(self, V, check=True):
@@ -6040,9 +6042,9 @@ cdef class Matrix(Matrix1):
60406042
raise ArithmeticError("self must be a square matrix")
60416043
n = self.nrows()
60426044
v = sage.modules.free_module.VectorSpace(self.base_ring(), n).gen(i)
6043-
tm = verbose('computing iterates...')
6045+
tm = verbose('computing iterates...', level=2)
60446046
cols = self.iterates(v, 2*n).columns()
6045-
tm = verbose('computed iterates', tm)
6047+
tm = verbose('computed iterates', level=2, t=tm)
60466048
f = None
60476049
# Compute the minimal polynomial of the linear recurrence
60486050
# sequence corresponding to the 0-th entries of the iterates,
@@ -6052,9 +6054,9 @@ cdef class Matrix(Matrix1):
60526054
else:
60536055
R = [t]
60546056
for i in R:
6055-
tm = verbose('applying berlekamp-massey')
6057+
tm = verbose('applying berlekamp-massey', level=2)
60566058
g = berlekamp_massey.berlekamp_massey(cols[i].list())
6057-
verbose('berlekamp-massey done', tm)
6059+
verbose('berlekamp-massey done', level=2, t=tm)
60586060
if f is None:
60596061
f = g
60606062
else:
@@ -8100,7 +8102,7 @@ cdef class Matrix(Matrix1):
81008102
if self.fetch('in_echelon_form'):
81018103
return self.fetch('pivots')
81028104

8103-
_ = verbose('generic in-place Gauss elimination on %s x %s matrix using %s algorithm' % (self._nrows, self._ncols, algorithm))
8105+
_ = verbose('generic in-place Gauss elimination on %s x %s matrix using %s algorithm' % (self._nrows, self._ncols, algorithm), level=2)
81048106
self.check_mutability()
81058107
cdef Matrix A
81068108

@@ -8852,7 +8854,7 @@ cdef class Matrix(Matrix1):
88528854
[ 0 0 0 0]
88538855
[ 0 0 0 0]
88548856
"""
8855-
tm = verbose('strassen echelon of %s x %s matrix'%(self._nrows, self._ncols))
8857+
tm = verbose('strassen echelon of %s x %s matrix'%(self._nrows, self._ncols), level=2)
88568858

88578859
self.check_mutability()
88588860

@@ -8872,7 +8874,7 @@ cdef class Matrix(Matrix1):
88728874
from sage.matrix import strassen
88738875
pivots = strassen.strassen_echelon(self.matrix_window(), cutoff)
88748876
self.cache('pivots', pivots)
8875-
verbose('done with strassen', tm)
8877+
verbose('done with strassen', level=2, t=tm)
88768878

88778879
cpdef matrix_window(self, Py_ssize_t row=0, Py_ssize_t col=0,
88788880
Py_ssize_t nrows=-1, Py_ssize_t ncols=-1,

0 commit comments

Comments
 (0)