You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/sage/categories/drinfeld_modules.py
+5-5Lines changed: 5 additions & 5 deletions
Original file line number
Diff line number
Diff line change
@@ -132,7 +132,7 @@ class DrinfeldModules(Category_over_base_ring):
132
132
133
133
sage: psi = cat.object([p_root, 1])
134
134
sage: psi
135
-
Drinfeld module defined by T |--> t + z^3 + 7*z^2 + 6*z + 10 over Finite Field in z of size 11^4 over its base
135
+
Drinfeld module defined by T |--> t + z^3 + 7*z^2 + 6*z + 10
136
136
sage: psi.category() is cat
137
137
True
138
138
@@ -149,7 +149,7 @@ class DrinfeldModules(Category_over_base_ring):
149
149
150
150
sage: rho = cat.random_object(2)
151
151
sage: rho # random
152
-
Drinfeld module defined by T |--> (7*z^3 + 7*z^2 + 10*z + 2)*t^2 + (9*z^3 + 5*z^2 + 2*z + 7)*t + z^3 + 7*z^2 + 6*z + 10 over Finite Field in z of size 11^4
152
+
Drinfeld module defined by T |--> (7*z^3 + 7*z^2 + 10*z + 2)*t^2 + (9*z^3 + 5*z^2 + 2*z + 7)*t + z^3 + 7*z^2 + 6*z + 10
153
153
sage: rho.rank() == 2
154
154
True
155
155
sage: rho.category() is cat
@@ -494,7 +494,7 @@ def object(self, gen):
494
494
sage: cat = phi.category()
495
495
sage: psi = cat.object([p_root, 0, 1])
496
496
sage: psi
497
-
Drinfeld module defined by T |--> t^2 + z^3 + 7*z^2 + 6*z + 10 over Finite Field in z of size 11^4 over its base
497
+
Drinfeld module defined by T |--> t^2 + z^3 + 7*z^2 + 6*z + 10
Drinfeld module defined by T |--> t^3 + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12 over Finite Field in z12 of size 5^12 over its base
739
+
Drinfeld module defined by T |--> t^3 + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
740
740
741
741
Reciprocally, it is impossible to create two Drinfeld modules in
742
742
this category if they do not share the same constant
Copy file name to clipboardExpand all lines: src/sage/rings/function_field/drinfeld_modules/action.py
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -58,7 +58,7 @@ class DrinfeldModuleAction(Action):
58
58
sage: phi = DrinfeldModule(A, [z, 0, 0, 1])
59
59
sage: action = phi.action()
60
60
sage: action
61
-
Action on Finite Field in z of size 11^2 over its base induced by Drinfeld module defined by T |--> t^3 + z over Finite Field in z of size 11^2 over its base
61
+
Action on Finite Field in z of size 11^2 over its base induced by Drinfeld module defined by T |--> t^3 + z
62
62
63
63
The action on elements is computed as follows::
64
64
@@ -170,7 +170,7 @@ def _repr_(self):
170
170
sage: phi = DrinfeldModule(A, [z, 0, 0, 1])
171
171
sage: action = phi.action()
172
172
sage: action
173
-
Action on Finite Field in z of size 11^2 over its base induced by Drinfeld module defined by T |--> t^3 + z over Finite Field in z of size 11^2 over its base
173
+
Action on Finite Field in z of size 11^2 over its base induced by Drinfeld module defined by T |--> t^3 + z
Copy file name to clipboardExpand all lines: src/sage/rings/function_field/drinfeld_modules/drinfeld_module.py
+14-18Lines changed: 14 additions & 18 deletions
Original file line number
Diff line number
Diff line change
@@ -49,10 +49,8 @@ class DrinfeldModule(Parent, UniqueRepresentation):
49
49
50
50
A Drinfeld `\mathbb{F}_q[T]`-module over the `base
51
51
\mathbb{F}_q[T]`-field `K` is an `\mathbb{F}_q`-algebra morphism
52
-
`\phi: \mathbb{F}_q[T] \to K\{\tau\}` such that:
53
-
1. The image of `\phi` contains nonconstant Ore polynomials.
54
-
2. For every element `a` in the `\mathbb{F}_q[T]`, the constant
55
-
coefficient `\phi(a)` is `\gamma(a)`.
52
+
`\phi: \mathbb{F}_q[T] \to K\{\tau\}` such that `\Im(\phi) \not\subset K`
53
+
and `\phi` agrees with `\gamma` on `\mathbb{F}_q`.
56
54
57
55
For `a` in `\mathbb{F}_q[T]`, `\phi(a)` is denoted `\phi_a`.
58
56
@@ -80,7 +78,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
80
78
sage: K.<z> = Fq.extension(6)
81
79
sage: phi = DrinfeldModule(A, [z, 4, 1])
82
80
sage: phi
83
-
Drinfeld module defined by T |--> t^2 + 4*t + z over Finite Field in z of size 5^12 over its base
81
+
Drinfeld module defined by T |--> t^2 + 4*t + z
84
82
85
83
::
86
84
@@ -89,7 +87,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
89
87
sage: K.<z> = Frac(A)
90
88
sage: psi = DrinfeldModule(A, [z, T+1])
91
89
sage: psi
92
-
Drinfeld module defined by T |--> (T + 1)*t + T over Fraction Field of Univariate Polynomial Ring in T over Finite Field in z2 of size 7^2 over its base
90
+
Drinfeld module defined by T |--> (T + 1)*t + T
93
91
94
92
.. NOTE::
95
93
@@ -128,7 +126,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
128
126
sage: K.<z> = Fq.extension(6)
129
127
sage: phi = DrinfeldModule(A, [z, 1, 1])
130
128
sage: phi
131
-
Drinfeld module defined by T |--> t^2 + t + z over Finite Field in z of size 3^12 over its base
129
+
Drinfeld module defined by T |--> t^2 + t + z
132
130
133
131
.. NOTE::
134
132
@@ -141,7 +139,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
Drinfeld module defined by T |--> (T^3 + T + 1)*t^2 + t + T over Fraction Field of Univariate Polynomial Ring in T over Finite Field in z2 of size 3^2 over its base
142
+
Drinfeld module defined by T |--> (T^3 + T + 1)*t^2 + t + T
145
143
146
144
::
147
145
@@ -159,7 +157,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
159
157
sage: rho_T = z + t^3
160
158
sage: rho = DrinfeldModule(A, rho_T)
161
159
sage: rho
162
-
Drinfeld module defined by T |--> t^3 + z over Finite Field in z of size 3^12 over its base
160
+
Drinfeld module defined by T |--> t^3 + z
163
161
sage: rho(T) == rho_T
164
162
True
165
163
@@ -195,7 +193,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
195
193
196
194
sage: cat = phi.category()
197
195
sage: cat.object([z, 0, 0, 1])
198
-
Drinfeld module defined by T |--> t^3 + z over Finite Field in z of size 3^12 over its base
196
+
Drinfeld module defined by T |--> t^3 + z
199
197
200
198
.. RUBRIC:: The base field of a Drinfeld module
201
199
@@ -223,8 +221,6 @@ class DrinfeldModule(Parent, UniqueRepresentation):
223
221
224
222
One can retrieve basic properties::
225
223
226
-
::
227
-
228
224
sage: phi.base_morphism()
229
225
Ring morphism:
230
226
From: Univariate Polynomial Ring in T over Finite Field in z2 of size 3^2
@@ -366,7 +362,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
Drinfeld module defined by T |--> (2*z^11 + 2*z^9 + z^6 + 2*z^5 + 2*z^4 + 2*z^2 + 1)*t^2 + (2*z^11 + 2*z^10 + 2*z^9 + z^8 + 2*z^7 + 2*z^6 + z^5 + 2*z^4 + 2*z^2 + 2*z)*t + z over Finite Field in z of size 3^12 over its base
@@ -397,7 +393,7 @@ class DrinfeldModule(Parent, UniqueRepresentation):
397
393
398
394
sage: action = phi.action()
399
395
sage: action
400
-
Action on Finite Field in z of size 3^12 over its base induced by Drinfeld module defined by T |--> t^2 + t + z over Finite Field in z of size 3^12 over its base
396
+
Action on Finite Field in z of size 3^12 over its base induced by Drinfeld module defined by T |--> t^2 + t + z
401
397
402
398
The action on elements is computed by calling the action object::
Drinfeld module defined by T |--> z12^5*t^2 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12 over Finite Field in z12 of size 5^12 over its base
822
+
Drinfeld module defined by T |--> z12^5*t^2 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
827
823
"""
828
824
returnf'Drinfeld module defined by {self._function_ring.gen()} ' \
Action on Finite Field in z12 of size 5^12 over its base induced by Drinfeld module defined by T |--> z12^5*t^2 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12 over Finite Field in z12 of size 5^12 over its base
845
+
Action on Finite Field in z12 of size 5^12 over its base induced by Drinfeld module defined by T |--> z12^5*t^2 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
Copy file name to clipboardExpand all lines: src/sage/rings/function_field/drinfeld_modules/morphism.py
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -64,14 +64,14 @@ class DrinfeldModuleMorphism(Morphism, UniqueRepresentation,
64
64
One can get basic data on the morphism::
65
65
66
66
sage: morphism.domain()
67
-
Drinfeld module defined by T |--> z12^5*t^2 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12 over Finite Field in z12 of size 5^12 over its base
67
+
Drinfeld module defined by T |--> z12^5*t^2 + z12^3*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
68
68
sage: morphism.domain() is phi
69
69
True
70
70
71
71
::
72
72
73
73
sage: morphism.codomain()
74
-
Drinfeld module defined by T |--> (z12^11 + 3*z12^10 + z12^9 + z12^7 + z12^5 + 4*z12^4 + 4*z12^3 + z12^2 + 1)*t^2 + (2*z12^11 + 4*z12^10 + 2*z12^8 + z12^6 + 3*z12^5 + z12^4 + 2*z12^3 + z12^2 + z12 + 4)*t + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12 over Finite Field in z12 of size 5^12 over its base
0 commit comments