@@ -279,7 +279,7 @@ def m(self, i, j):
279279 """
280280 from sage .misc .superseded import deprecation
281281 deprecation (30237 , "the .m(i, j) method has been deprecated; use .coxeter_matrix()[i,j] instead." )
282- return self .coxeter_matrix ()[i ,j ]
282+ return self .coxeter_matrix ()[i , j ]
283283
284284 def kazhdan_lusztig_polynomial (self , u , v , constant_term_one = True ):
285285 r"""
@@ -354,8 +354,9 @@ def kazhdan_lusztig_polynomial(self, u, v, constant_term_one=True):
354354 return p
355355 ZZq = PolynomialRing (ZZ , 'q' , sparse = True )
356356 # This is the same as q**len_diff * p(q**(-2))
357- len_diff = v .length ()- u .length ()
358- d = {- 2 * deg + len_diff : coeff for deg ,coeff in enumerate (p ) if coeff != 0 }
357+ len_diff = v .length () - u .length ()
358+ d = {- 2 * deg + len_diff : coeff for deg , coeff in enumerate (p )
359+ if coeff != 0 }
359360 return ZZq (d )
360361
361362 def parabolic_kazhdan_lusztig_polynomial (self , u , v , J , constant_term_one = True ):
@@ -414,11 +415,11 @@ def parabolic_kazhdan_lusztig_polynomial(self, u, v, J, constant_term_one=True):
414415 WOI = self .weak_order_ideal (lambda x : J_set .issuperset (x .descents ()))
415416 if constant_term_one :
416417 P = PolynomialRing (ZZ , 'q' )
417- return P .sum ((- 1 )** (z .length ()) * self .kazhdan_lusztig_polynomial (u * z , v )
418- for z in WOI if (u * z ).bruhat_le (v ))
418+ return P .sum ((- 1 )** (z .length ()) * self .kazhdan_lusztig_polynomial (u * z , v )
419+ for z in WOI if (u * z ).bruhat_le (v ))
419420 P = PolynomialRing (ZZ , 'q' , sparse = True )
420- return P .sum ((- 1 )** (z .length ()) * self .kazhdan_lusztig_polynomial (u * z , v , constant_term_one = False ).shift (z .length ())
421- for z in WOI if (u * z ).bruhat_le (v ))
421+ return P .sum ((- 1 )** (z .length ()) * self .kazhdan_lusztig_polynomial (u * z , v , constant_term_one = False ).shift (z .length ())
422+ for z in WOI if (u * z ).bruhat_le (v ))
422423
423424 class Element (ElementWrapper ):
424425 wrapped_class = CoxGroupElement
@@ -701,7 +702,7 @@ def action_on_rational_function(self, f):
701702
702703 for exponent in exponents :
703704 # Construct something in the root lattice from the exponent vector
704- exponent = sum (e * b for e , b in zip (exponent , basis_elements ))
705+ exponent = sum (e * b for e , b in zip (exponent , basis_elements ))
705706 exponent = self .action (exponent )
706707
707708 monomial = 1
0 commit comments