@@ -162,18 +162,19 @@ def RandomBarabasiAlbert(n, m, seed=None):
162
162
163
163
We view many random graphs using a graphics array::
164
164
165
+ sage: # needs networkx sage.plot
165
166
sage: g = []
166
167
sage: j = []
167
- sage: for i in range(1,10): # needs networkx
168
+ sage: for i in range(1,10):
168
169
....: k = graphs.RandomBarabasiAlbert(i+3, 3)
169
170
....: g.append(k)
170
- sage: for i in range(3): # needs networkx sage.plot
171
+ sage: for i in range(3):
171
172
....: n = []
172
173
....: for m in range(3):
173
174
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
174
175
....: j.append(n)
175
- sage: G = graphics_array(j) # needs networkx sage.plot
176
- sage: G.show() # long time # needs networkx sage.plot
176
+ sage: G = graphics_array(j)
177
+ sage: G.show() # long time
177
178
178
179
When `m = 1`, the generated graph is a tree::
179
180
@@ -690,18 +691,19 @@ def RandomGNM(n, m, dense=False, seed=None):
690
691
691
692
We view many random graphs using a graphics array::
692
693
694
+ sage: # needs networkx sage.plot
693
695
sage: g = []
694
696
sage: j = []
695
- sage: for i in range(9): # needs networkx
697
+ sage: for i in range(9):
696
698
....: k = graphs.RandomGNM(i+3, i^2-i)
697
699
....: g.append(k)
698
- sage: for i in range(3): # needs networkx sage.plot
700
+ sage: for i in range(3):
699
701
....: n = []
700
702
....: for m in range(3):
701
703
....: n.append(g[3*i + m].plot(vertex_size=50, vertex_labels=False))
702
704
....: j.append(n)
703
- sage: G = graphics_array(j) # needs networkx sage.plot
704
- sage: G.show() # long time # needs networkx sage.plot
705
+ sage: G = graphics_array(j)
706
+ sage: G.show() # long time
705
707
"""
706
708
if seed is None :
707
709
seed = int (current_randstate ().long_seed () % sys .maxsize )
@@ -1446,7 +1448,7 @@ def RandomTreePowerlaw(n, gamma=3, tries=1000, seed=None):
1446
1448
::
1447
1449
1448
1450
sage: G = graphs.RandomTreePowerlaw(15, 2) # needs networkx
1449
- sage: if G: # random output # long time # needs networkx sage.plot
1451
+ sage: if G: # random output # long time, needs networkx sage.plot
1450
1452
....: G.show()
1451
1453
"""
1452
1454
if seed is None :
@@ -1486,7 +1488,7 @@ def RandomRegular(d, n, seed=None):
1486
1488
::
1487
1489
1488
1490
sage: G = graphs.RandomRegular(3, 20) # needs networkx
1489
- sage: if G: # random output # long time # needs networkx sage.plot
1491
+ sage: if G: # random output # long time, needs networkx sage.plot
1490
1492
....: G.show()
1491
1493
1492
1494
REFERENCES:
@@ -2101,17 +2103,18 @@ def RandomBicubicPlanar(n, seed=None):
2101
2103
2102
2104
EXAMPLES::
2103
2105
2106
+ sage: # needs sage.combinat
2104
2107
sage: n = randint(200, 300)
2105
- sage: G = graphs.RandomBicubicPlanar(n) # needs sage.combinat
2106
- sage: G.order() == 2*n # needs sage.combinat
2108
+ sage: G = graphs.RandomBicubicPlanar(n)
2109
+ sage: G.order() == 2*n
2107
2110
True
2108
- sage: G.size() == 3*n # needs sage.combinat
2111
+ sage: G.size() == 3*n
2109
2112
True
2110
- sage: G.is_bipartite() and G.is_planar() and G.is_regular(3) # needs sage.combinat
2113
+ sage: G.is_bipartite() and G.is_planar() and G.is_regular(3)
2111
2114
True
2112
- sage: dic = {'red': [v for v in G.vertices(sort=False) if v[0] == 'n'], # needs sage.combinat
2115
+ sage: dic = {'red': [v for v in G.vertices(sort=False) if v[0] == 'n'],
2113
2116
....: 'blue': [v for v in G.vertices(sort=False) if v[0] != 'n']}
2114
- sage: G.plot(vertex_labels=False, vertex_size=20, vertex_colors=dic) # needs sage.combinat sage. plot
2117
+ sage: G.plot(vertex_labels=False, vertex_size=20, vertex_colors=dic) # needs sage.plot
2115
2118
Graphics object consisting of ... graphics primitives
2116
2119
2117
2120
.. PLOT::
@@ -2213,17 +2216,18 @@ def RandomUnitDiskGraph(n, radius=.1, side=1, seed=None):
2213
2216
2214
2217
When using twice the same seed, the vertices get the same positions::
2215
2218
2219
+ sage: # needs scipy
2216
2220
sage: from sage.misc.randstate import current_randstate
2217
2221
sage: seed = current_randstate().seed()
2218
- sage: G = graphs.RandomUnitDiskGraph(20, radius=.5, side=1, seed=seed) # needs scipy
2219
- sage: H = graphs.RandomUnitDiskGraph(20, radius=.2, side=1, seed=seed) # needs scipy
2220
- sage: H.is_subgraph(G, induced=False) # needs scipy
2222
+ sage: G = graphs.RandomUnitDiskGraph(20, radius=.5, side=1, seed=seed)
2223
+ sage: H = graphs.RandomUnitDiskGraph(20, radius=.2, side=1, seed=seed)
2224
+ sage: H.is_subgraph(G, induced=False)
2221
2225
True
2222
- sage: H.size() <= G.size() # needs scipy
2226
+ sage: H.size() <= G.size()
2223
2227
True
2224
- sage: Gpos = G.get_pos() # needs scipy
2225
- sage: Hpos = H.get_pos() # needs scipy
2226
- sage: all(Gpos[u] == Hpos[u] for u in G) # needs scipy
2228
+ sage: Gpos = G.get_pos()
2229
+ sage: Hpos = H.get_pos()
2230
+ sage: all(Gpos[u] == Hpos[u] for u in G)
2227
2231
True
2228
2232
2229
2233
When the radius is more than `\sqrt{2 \text{side}}`, the graph is a clique::
0 commit comments