@@ -139,7 +139,7 @@ def _local_genera(p, rank, det_val, max_scale, even):
139
139
140
140
- ``det_val`` -- valuation of the determinant at `p`
141
141
142
- - ``max_scale`` -- integer the maximal scale of a jordan block
142
+ - ``max_scale`` -- integer the maximal scale of a Jordan block
143
143
144
144
- ``even`` -- boolean; ignored if `p` is not `2`
145
145
@@ -225,7 +225,7 @@ def _local_genera(p, rank, det_val, max_scale, even):
225
225
226
226
def _blocks (b , even_only = False ):
227
227
r"""
228
- Return all viable `2`-adic jordan blocks with rank and scale given by ``b``.
228
+ Return all viable `2`-adic Jordan blocks with rank and scale given by ``b``.
229
229
230
230
This is a helper function for :meth:`_local_genera`.
231
231
It is based on the existence conditions for a modular `2`-adic genus symbol.
@@ -591,20 +591,20 @@ def canonical_2_adic_compartments(genus_symbol_quintuple_list):
591
591
592
592
def canonical_2_adic_trains (genus_symbol_quintuple_list ) -> list :
593
593
r"""
594
- Given a `2`-adic local symbol (as the underlying list of quintuples)
595
- this returns a list of lists of indices of the
596
- ``genus_symbol_quintuple_list`` which are in the same train. A train
597
- is defined to be a maximal interval of Jordan components so that
598
- at least one of each adjacent pair (allowing zero-dimensional
599
- Jordan components) is (scaled) of type I (i.e. odd).
600
- Note that an interval of length one respects this condition as
601
- there is no pair in this interval.
594
+ Given a `2`-adic local symbol, return a list of lists of indices
595
+ of the ``genus_symbol_quintuple_list`` which are in the same train.
596
+
597
+ A train is defined to be a maximal interval of Jordan components
598
+ so that at least one of each adjacent pair (allowing
599
+ zero-dimensional Jordan components) is (scaled) of type I
600
+ (i.e. odd). Note that an interval of length one respects this
601
+ condition as there is no pair in this interval.
602
602
In particular, every Jordan component is part of a train.
603
603
604
604
INPUT:
605
605
606
- - ``genus_symbol_quintuple_list`` -- a quintuple of integers (with certain
607
- restrictions).
606
+ - ``genus_symbol_quintuple_list`` -- a `2`-adic local symbol as a list of
607
+ quintuples of integers (with certain restrictions).
608
608
609
609
OUTPUT: list of lists of distinct integers
610
610
@@ -654,7 +654,7 @@ def canonical_2_adic_trains(genus_symbol_quintuple_list) -> list:
654
654
See [CS1999]_, pp. 381-382 for definitions and examples.
655
655
"""
656
656
# avoid a special case for the end of symbol
657
- # if a jordan component has rank zero it is considered even.
657
+ # if a Jordan component has rank zero it is considered even.
658
658
symbol = genus_symbol_quintuple_list
659
659
symbol .append ([symbol [- 1 ][0 ]+ 1 , 0 , 1 , 0 , 0 ]) # We have just modified the input globally!
660
660
# Hence, we have to remove the last entry of symbol at the end.
@@ -675,7 +675,7 @@ def canonical_2_adic_trains(genus_symbol_quintuple_list) -> list:
675
675
trains .append (new_train )
676
676
new_train = [i ]
677
677
else :
678
- # there is an odd jordan block adjacent to this jordan block
678
+ # there is an odd Jordan block adjacent to this Jordan block
679
679
# the train continues
680
680
new_train .append (i )
681
681
# the last train was never added.
@@ -3313,7 +3313,7 @@ def norm(self):
3313
3313
3314
3314
def _gram_from_jordan_block (p , block , discr_form = False ):
3315
3315
r"""
3316
- Return the Gram matrix of this jordan block.
3316
+ Return the Gram matrix of this Jordan block.
3317
3317
3318
3318
This is a helper for :meth:`discriminant_form` and :meth:`gram_matrix`.
3319
3319
No input checks.
0 commit comments