Skip to content

Commit e0ffa0f

Browse files
author
Release Manager
committed
Trac #33097: some typos in combinat and modular
found using codespell URL: https://trac.sagemath.org/33097 Reported by: chapoton Ticket author(s): Frédéric Chapoton Reviewer(s): Michael Orlitzky
2 parents 396023c + ecb2717 commit e0ffa0f

File tree

18 files changed

+40
-39
lines changed

18 files changed

+40
-39
lines changed

src/sage/algebras/quantum_groups/ace_quantum_onsager.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -26,12 +26,13 @@
2626
from sage.sets.family import Family
2727
from sage.rings.integer_ring import ZZ
2828

29+
2930
class ACEQuantumOnsagerAlgebra(CombinatorialFreeModule):
3031
r"""
3132
The alternating central extension of the `q`-Onsager algebra.
3233
3334
The *alternating central extension* `\mathcal{A}_q` of the `q`-Onsager
34-
alegbra `O_q` is a current algebra of `O_q` introduced by Baseilhac
35+
algebra `O_q` is a current algebra of `O_q` introduced by Baseilhac
3536
and Koizumi [BK2005]_. A presentation was given by Baseilhac
3637
and Shigechi [BS2010]_, which was then reformulated in terms of currents
3738
in [Ter2021]_ and then used to prove that the generators form a PBW basis.
@@ -163,7 +164,7 @@ def _monomial_key(self, x):
163164
164165
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
165166
sage: AG = A.algebra_generators()
166-
sage: AG[1,1] * AG[1,0] * AG[0,1] # indirect doctest
167+
sage: AG[1,1] * AG[1,0] * AG[0,1] # indirect doctest
167168
G[1]*W[0]*W[1] + (q/(q^2+1))*G[1]^2 + (-q/(q^2+1))*G[1]*Gt[1]
168169
+ ((-q^8+2*q^4-1)/q^5)*W[-1]*W[1] + ((-q^8+2*q^4-1)/q^5)*W[0]^2
169170
+ ((q^8-2*q^4+1)/q^5)*W[0]*W[2] + ((q^8-2*q^4+1)/q^5)*W[1]^2
@@ -276,6 +277,7 @@ def algebra_generators(self):
276277
"""
277278
G = self._indices.gens()
278279
q = self._q
280+
279281
def monomial_map(x):
280282
if x[0] != 1 and x[1] == 0:
281283
return self.term(self.one_basis(), -(q-~q)*(q+~q)**2)
@@ -658,7 +660,7 @@ def sigma(self):
658660
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
659661
sage: G = A.algebra_generators()
660662
sage: x = A.an_element()^2
661-
sage: A.sigma(A.sigma(x)) == x
663+
sage: A.sigma(A.sigma(x)) == x
662664
True
663665
sage: A.sigma(G[1,-1] * G[1,1]) == A.sigma(G[1,-1]) * A.sigma(G[1,1])
664666
True
@@ -677,7 +679,7 @@ def dagger(self):
677679
sage: A = algebras.AlternatingCentralExtensionQuantumOnsager(QQ)
678680
sage: G = A.algebra_generators()
679681
sage: x = A.an_element()^2
680-
sage: A.dagger(A.dagger(x)) == x
682+
sage: A.dagger(A.dagger(x)) == x
681683
True
682684
sage: A.dagger(G[1,-1] * G[1,1]) == A.dagger(G[1,1]) * A.dagger(G[1,-1])
683685
True
@@ -687,4 +689,3 @@ def dagger(self):
687689
True
688690
"""
689691
return self.module_morphism(self._dagger_on_basis, codomain=self)
690-

src/sage/combinat/abstract_tree.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1454,12 +1454,12 @@ def _latex_(self):
14541454
(a) edge (b) edge (e);
14551455
\end{tikzpicture}}
14561456
"""
1457-
###############################################################################
1457+
#######################################################################
14581458
# load tikz in the preamble for *view*
14591459
from sage.misc.latex import latex
14601460
latex.add_package_to_preamble_if_available("tikz")
1461-
###############################################################################
1462-
# latex environnement : TikZ
1461+
#######################################################################
1462+
# latex environment : TikZ
14631463
begin_env = "\\begin{tikzpicture}[auto]\n"
14641464
end_env = "\\end{tikzpicture}"
14651465
# it uses matrix trick to place each node

src/sage/combinat/crystals/affine_factorization.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -184,7 +184,7 @@ def _repr_(self):
184184
"""
185185
return "Crystal on affine factorizations of type A{} associated to {}".format(self.n-1, self.w)
186186

187-
# temporary workaround while an_element is overriden by Parent
187+
# temporary workaround while an_element is overridden by Parent
188188
_an_element_ = EnumeratedSets.ParentMethods._an_element_
189189

190190
@lazy_attribute

src/sage/combinat/crystals/fully_commutative_stable_grothendieck.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -424,11 +424,12 @@ def list(self):
424424
"""
425425
return _generate_decreasing_hecke_factorizations(self.w, self.factors, self.excess, parent=self)
426426

427-
# temporary workaround while an_element is overriden by Parent
427+
# temporary workaround while an_element is overridden by Parent
428428
_an_element_ = EnumeratedSets.ParentMethods._an_element_
429429

430430
Element = DecreasingHeckeFactorization
431431

432+
432433
class FullyCommutativeStableGrothendieckCrystal(UniqueRepresentation, Parent):
433434
"""
434435
The crystal on fully commutative decreasing factorizations in the 0-Hecke

src/sage/combinat/designs/ext_rep.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -961,8 +961,8 @@ def _char_data(self, data):
961961
#@ this stripping may distort char data in the <info> subtree
962962
# if they are not bracketed in some way.
963963
data = data.strip()
964-
if data != '':
965-
# we use the xtree's childrens list here to collect char data
964+
if data:
965+
# we use the xtree's children list here to collect char data
966966
# since only leaves have char data.
967967
self.current_node[2].append(data)
968968

src/sage/combinat/designs/orthogonal_arrays.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1567,7 +1567,7 @@ def OA_n_times_2_pow_c_from_matrix(k,c,G,A,Y,check=True):
15671567
15681568
- let `s_1` and `s_2` denote the two values of `s` given above, then exactly
15691569
one of `C_{i,s_1} - C_{j,s_1}` and `C_{i,s_2} - C_{j,s_2}` belongs to the
1570-
`GF(2)`-hyperplane `(Y_i - Y_j) \cdot H` (we implicitely assumed that `Y_i
1570+
`GF(2)`-hyperplane `(Y_i - Y_j) \cdot H` (we implicitly assumed that `Y_i
15711571
\not= Y_j`).
15721572
15731573
Under these conditions, it is easy to check that the array whose `k-1` rows

src/sage/combinat/k_regular_sequence.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -396,7 +396,7 @@ def from_recurrence(self, *args, **kwds):
396396
The recurrence relations above uniquely determine a `k`-regular sequence;
397397
see [HKL2021]_ for further information.
398398
399-
- ``function`` -- symbolic function ``f`` occuring in the equations
399+
- ``function`` -- symbolic function ``f`` occurring in the equations
400400
401401
- ``var`` -- symbolic variable (``n`` in the above description of ``equations``)
402402

src/sage/combinat/recognizable_series.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -926,7 +926,7 @@ def minimized(self):
926926
927927
A :class:`RecognizableSeries`
928928
929-
ALOGRITHM:
929+
ALGORITHM:
930930
931931
This method implements the minimization algorithm presented in
932932
Chapter 2 of [BR2010a]_.

src/sage/combinat/root_system/cartan_type.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -924,7 +924,7 @@ class options(GlobalOptions):
924924
D_{5}^{(2)}
925925
926926
For type `A_{2n}^{(2)\dagger}`, the dual string/latex options are
927-
automatically overriden::
927+
automatically overridden::
928928
929929
sage: dct = CartanType(['A',8,2]).dual(); dct
930930
['A', 8, 2]^+

src/sage/combinat/sf/orthotriang.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ def __init__(self, Sym, base, scalar, prefix, basis_name, leading_coeff=None):
7070
.. NOTE::
7171
7272
The base ring is required to be a `\QQ`-algebra for this
73-
method to be useable, since the scalar product is defined by
73+
method to be usable, since the scalar product is defined by
7474
its values on the power sum basis.
7575
7676
EXAMPLES::

0 commit comments

Comments
 (0)