@@ -164,7 +164,7 @@ def _reduced_ternary_form_eisenstein_with_matrix(a1, a2, a3, a23, a13, a12):
164
164
m12 = - m12
165
165
m22 = - m22
166
166
m32 = - m32
167
- a13= - a13
167
+ a13 = - a13
168
168
if (a12 < 0 ):
169
169
# M *= diagonal_matrix([1, 1, -1])
170
170
m13 = - m13
@@ -186,23 +186,23 @@ def _reduced_ternary_form_eisenstein_with_matrix(a1, a2, a3, a23, a13, a12):
186
186
if (a12 == 0 ):
187
187
s3 = 1
188
188
if s1:
189
- # M *= diagonal_matrix([-1, 1, 1])
190
- m11 = - m11
191
- m21 = - m21
192
- m31 = - m31
193
- a23 = - a23
189
+ # M *= diagonal_matrix([-1, 1, 1])
190
+ m11 = - m11
191
+ m21 = - m21
192
+ m31 = - m31
193
+ a23 = - a23
194
194
if s2:
195
- # M *= diagonal_matrix([1, -1, 1])
196
- m12 = - m12
197
- m22 = - m22
198
- m32 = - m32
199
- a13 = - a13
195
+ # M *= diagonal_matrix([1, -1, 1])
196
+ m12 = - m12
197
+ m22 = - m22
198
+ m32 = - m32
199
+ a13 = - a13
200
200
if s3:
201
- # M *= diagonal_matrix([1, 1, -1])
202
- m13 = - m13
203
- m23 = - m23
204
- m33 = - m33
205
- a12 = - a12
201
+ # M *= diagonal_matrix([1, 1, -1])
202
+ m13 = - m13
203
+ m23 = - m23
204
+ m33 = - m33
205
+ a12 = - a12
206
206
207
207
loop = not (abs (a23) <= a2 and abs (a13) <= a1 and abs (a12) <= a1 and a1 + a2 + a23 + a13 + a12 >= 0 )
208
208
@@ -308,7 +308,6 @@ def _reduced_ternary_form_eisenstein_with_matrix(a1, a2, a3, a23, a13, a12):
308
308
matrix(ZZ, 3 , (m11, m12, m13, m21, m22, m23, m31, m32, m33))
309
309
310
310
311
-
312
311
def _reduced_ternary_form_eisenstein_without_matrix (a1 , a2 , a3 , a23 , a13 , a12 ):
313
312
"""
314
313
Find the coefficients of the equivalent unique reduced ternary form according to the conditions
0 commit comments