@@ -259,7 +259,7 @@ cdef class MPolynomial(CommutativePolynomial):
259259 return min (self .support(), * args, ** kwds)
260260
261261 def coefficients (self ):
262- """
262+ r """
263263 Return the nonzero coefficients of this polynomial in a list.
264264
265265 The returned list is decreasingly ordered by the term ordering
@@ -479,7 +479,7 @@ cdef class MPolynomial(CommutativePolynomial):
479479 for e, val in self .monomial_coefficients().items() if not e[ind]}
480480 v = [B(w)] # coefficients that don't involve var
481481 z = var
482- for i in range (1 ,d+ 1 ):
482+ for i in range (1 , d+ 1 ):
483483 c = < dict > self .coefficient(z).monomial_coefficients()
484484 w = {remove_from_tuple(e, ind): val for e, val in c.items()}
485485 v.append(B(w))
@@ -537,7 +537,7 @@ cdef class MPolynomial(CommutativePolynomial):
537537 elif my_vars[- 1 ] not in vars :
538538 x = base_ring(self ) if base_ring is not None else self
539539 const_ix = ETuple((0 ,)* len (vars ))
540- return { const_ix: x }
540+ return {const_ix: x}
541541 elif not set (my_vars).issubset(set (vars )):
542542 # we need to split it up
543543 p = self .polynomial(self ._parent.gen(len (my_vars)- 1 ))
@@ -819,7 +819,7 @@ cdef class MPolynomial(CommutativePolynomial):
819819 subclasses.
820820 """
821821 M = self .monomials()
822- if M== []:
822+ if M == []:
823823 return True
824824 d = M.pop().degree()
825825 for m in M:
@@ -1149,14 +1149,14 @@ cdef class MPolynomial(CommutativePolynomial):
11491149 g = R.gen_names()
11501150 v = []
11511151 for m, c in zip (self .monomials(), self .coefficients()):
1152- v.append(' (%s )*%s ' % ( c._magma_init_(magma),
1153- m._repr_with_changed_varnames(g)))
1152+ v.append(' (%s )*%s ' % ( c._magma_init_(magma),
1153+ m._repr_with_changed_varnames(g)))
11541154 if len (v) == 0 :
11551155 s = ' 0'
11561156 else :
11571157 s = ' +' .join(v)
11581158
1159- return ' %s !(%s )' % (R.name(), s)
1159+ return ' %s !(%s )' % (R.name(), s)
11601160
11611161 def _giac_init_ (self ):
11621162 r """
@@ -1233,7 +1233,7 @@ cdef class MPolynomial(CommutativePolynomial):
12331233 """
12341234 from sage.geometry.polyhedron.constructor import Polyhedron
12351235 e = self .exponents()
1236- P = Polyhedron(vertices = e, base_ring = ZZ)
1236+ P = Polyhedron(vertices = e, base_ring = ZZ)
12371237 return P
12381238
12391239 def __iter__ (self ):
@@ -1449,7 +1449,7 @@ cdef class MPolynomial(CommutativePolynomial):
14491449 raise TypeError (" k must be a finite field" )
14501450 p = k.characteristic()
14511451 e = k.degree()
1452- v = [self ] + [self .map_coefficients(k.hom([k.gen()** (p** i)])) for i in range (1 ,e)]
1452+ v = [self ] + [self .map_coefficients(k.hom([k.gen()** (p** i)])) for i in range (1 , e)]
14531453 return prod(v).change_ring(k.prime_subfield())
14541454
14551455 def sylvester_matrix (self , right , variable = None ):
@@ -1904,7 +1904,7 @@ cdef class MPolynomial(CommutativePolynomial):
19041904 for y in x:
19051905 d = d.lcm(y.denominator())
19061906 return d
1907- except ( AttributeError ) :
1907+ except AttributeError :
19081908 return self .base_ring().one()
19091909
19101910 def numerator (self ):
@@ -2025,7 +2025,7 @@ cdef class MPolynomial(CommutativePolynomial):
20252025 ArithmeticError: element is non-invertible
20262026 """
20272027 P = self .parent()
2028- B = I.gens()
2028+ B = I.gens()
20292029 try :
20302030 XY = P.one().lift((self ,) + tuple (B))
20312031 return P(XY[0 ])
@@ -2111,7 +2111,7 @@ cdef class MPolynomial(CommutativePolynomial):
21112111 # Corner case, note that the degree of zero is an Integer
21122112 return Integer(- 1 )
21132113
2114- if len (weights) == 1 :
2114+ if len (weights) == 1 :
21152115 # First unwrap it if it is given as one element argument
21162116 weights = weights[0 ]
21172117
@@ -2132,9 +2132,9 @@ cdef class MPolynomial(CommutativePolynomial):
21322132 for i in range (n):
21332133 l += weights[i]* m[i]
21342134 deg = l
2135- for j in range (1 ,len (A)):
2135+ for j in range (1 , len (A)):
21362136 l = Integer(0 )
2137- m = < tuple > A[j]
2137+ m = < tuple > A[j]
21382138 for i in range (n):
21392139 l += weights[i]* m[i]
21402140 if deg < l:
@@ -2560,27 +2560,27 @@ cdef class MPolynomial(CommutativePolynomial):
25602560 from sage.rings.real_mpfr import RealField
25612561
25622562 if self .parent().ngens() != 2 :
2563- raise ValueError (" (=%s ) must have two variables" % self )
2563+ raise ValueError (" (=%s ) must have two variables" % self )
25642564 if not self .is_homogeneous():
2565- raise ValueError (" (=%s ) must be homogeneous" % self )
2565+ raise ValueError (" (=%s ) must be homogeneous" % self )
25662566
25672567 prec = kwds.get(' prec' , 300 )
2568- return_conjugation = kwds.get(' return_conjugation' , True )
2568+ return_conjugation = kwds.get(' return_conjugation' , True )
25692569 error_limit = kwds.get(' error_limit' , 0.000001 )
25702570 emb = kwds.get(' emb' , None )
25712571
25722572 # getting a numerical approximation of the roots of our polynomial
25732573 CF = ComplexIntervalField(prec = prec) # keeps trac of our precision error
25742574 RF = RealField(prec = prec)
25752575 R = self .parent()
2576- x,y = R.gens()
2576+ x, y = R.gens()
25772577
25782578 # finding quadratic Q_0, gives us our covariant, z_0
25792579 from sage.rings.polynomial.binary_form_reduce import covariant_z0
25802580 try :
25812581 z, th = covariant_z0(self , prec = prec, emb = emb, z0_cov = True )
25822582 except ValueError :# multiple roots
2583- F = self .lc()* prod([p for p,e in self .factor()])
2583+ F = self .lc()* prod([p for p, e in self .factor()])
25842584 z, th = covariant_z0(F, prec = prec, emb = emb, z0_cov = True )
25852585 z = CF(z)
25862586 # this moves z_0 to our fundamental domain using the three steps laid
@@ -2594,11 +2594,11 @@ cdef class MPolynomial(CommutativePolynomial):
25942594 # moves z into fundamental domain by m
25952595 m = zc.real().round() # finds amount to move z's real part by
25962596 Qm = QQ(m)
2597- M = M * matrix(QQ, [[1 ,Qm], [0 ,1 ]]) # move
2597+ M = M * matrix(QQ, [[1 , Qm], [0 , 1 ]]) # move
25982598 z -= m # M.inverse()*z is supposed to move z by m
25992599 elif (zc.real() <= RF(0 ) and zc.abs() < RF(1 )) or (zc.real() > RF(0 ) and zc.abs() <= RF(1 )): # flips z
26002600 z = - 1 / z
2601- M = M * matrix(QQ, [[0 ,- 1 ], [1 ,0 ]])# multiply on left because we are taking inverse matrices
2601+ M = M * matrix(QQ, [[0 , - 1 ], [1 , 0 ]])# multiply on left because we are taking inverse matrices
26022602 zc = z.center()
26032603
26042604 smallest_coeffs = kwds.get(' smallest_coeffs' , True )
0 commit comments