@@ -79,7 +79,7 @@ class CoxeterMatrixGroup(UniqueRepresentation, FinitelyGeneratedMatrixGroup_gene
79
79
80
80
We can create Coxeter groups from Coxeter matrices::
81
81
82
- sage: # needs sage.rings.number_field
82
+ sage: # needs sage.libs.gap
83
83
sage: W = CoxeterGroup([[1, 6, 3], [6, 1, 10], [3, 10, 1]]); W
84
84
Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
85
85
[ 1 6 3]
@@ -150,7 +150,7 @@ class CoxeterMatrixGroup(UniqueRepresentation, FinitelyGeneratedMatrixGroup_gene
150
150
graphs, we can input a Coxeter graph. Following the standard convention,
151
151
edges with no label (i.e. labelled by ``None``) are treated as 3::
152
152
153
- sage: # needs sage.rings.number_field
153
+ sage: # needs sage.libs.gap
154
154
sage: G = Graph([(0,3,None), (1,3,15), (2,3,7), (0,1,3)])
155
155
sage: W = CoxeterGroup(G); W
156
156
Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
@@ -165,7 +165,7 @@ class CoxeterMatrixGroup(UniqueRepresentation, FinitelyGeneratedMatrixGroup_gene
165
165
Because there currently is no class for `\ZZ \cup \{ \infty \}`, labels
166
166
of `\infty` are given by `-1` in the Coxeter matrix::
167
167
168
- sage: # needs sage.rings.number_field
168
+ sage: # needs sage.libs.gap
169
169
sage: G = Graph([(0,1,None), (1,2,4), (0,2,oo)])
170
170
sage: W = CoxeterGroup(G)
171
171
sage: W.coxeter_matrix()
@@ -240,15 +240,15 @@ def __init__(self, coxeter_matrix, base_ring, index_set):
240
240
EXAMPLES::
241
241
242
242
sage: W = CoxeterGroup([[1,3,2],[3,1,3],[2,3,1]])
243
- sage: TestSuite(W).run() # long time
243
+ sage: TestSuite(W).run() # long time
244
244
245
- sage: # needs sage.rings.number_field
245
+ sage: # long time, needs sage.rings.number_field sage.symbolic
246
246
sage: W = CoxeterGroup([[1,3,2],[3,1,4],[2,4,1]], base_ring=QQbar)
247
- sage: TestSuite(W).run() # long time
247
+ sage: TestSuite(W).run()
248
248
sage: W = CoxeterGroup([[1,3,2],[3,1,6],[2,6,1]])
249
- sage: TestSuite(W).run(max_runs=30) # long time
249
+ sage: TestSuite(W).run(max_runs=30)
250
250
sage: W = CoxeterGroup([[1,3,2],[3,1,-1],[2,-1,1]])
251
- sage: TestSuite(W).run(max_runs=30) # long time
251
+ sage: TestSuite(W).run(max_runs=30)
252
252
253
253
We check that :trac:`16630` is fixed::
254
254
@@ -340,7 +340,7 @@ def _repr_(self):
340
340
341
341
EXAMPLES::
342
342
343
- sage: CoxeterGroup([[1,3,2],[3,1,4],[2,4,1]]) # needs sage.rings.number_field
343
+ sage: CoxeterGroup([[1,3,2],[3,1,4],[2,4,1]]) # needs sage.libs.gap sage. rings.number_field
344
344
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? with Coxeter matrix:
345
345
[1 3 2]
346
346
[3 1 4]
@@ -383,8 +383,8 @@ def coxeter_matrix(self):
383
383
sage: W.coxeter_matrix()
384
384
[1 3]
385
385
[3 1]
386
- sage: W = CoxeterGroup(['H',3]) # needs sage.rings.number_field
387
- sage: W.coxeter_matrix()
386
+ sage: W = CoxeterGroup(['H',3]) # needs sage.libs.gap sage. rings.number_field
387
+ sage: W.coxeter_matrix() # needs sage.libs.gap sage.rings.number_field
388
388
[1 3 2]
389
389
[3 1 5]
390
390
[2 5 1]
@@ -423,7 +423,7 @@ def is_finite(self):
423
423
424
424
EXAMPLES::
425
425
426
- sage: # needs sage.rings.number_field
426
+ sage: # needs sage.libs.gap sage. rings.number_field
427
427
sage: [l for l in range(2, 9) if
428
428
....: CoxeterGroup([[1,3,2],[3,1,l],[2,l,1]]).is_finite()]
429
429
[2, 3, 4, 5]
0 commit comments