@@ -2147,7 +2147,7 @@ cdef class FiniteField(Field):
2147
2147
sage: f = R. random_element( degree=15)
2148
2148
sage: f. roots( )
2149
2149
[(117558869610275297997958296126212805270, 1) ]
2150
-
2150
+
2151
2151
We can take the roots of a polynomial defined over a finite field without multiplicities::
2152
2152
2153
2153
sage: set_random_seed( 31337)
@@ -2156,7 +2156,7 @@ cdef class FiniteField(Field):
2156
2156
sage: f = R. random_element( degree=150)
2157
2157
sage: f. roots( multiplicities=False)
2158
2158
[116560079209701720510648792531840294827 ]
2159
-
2159
+
2160
2160
We can take the roots of a polynomial defined over a finite field extension::
2161
2161
2162
2162
sage: set_random_seed( 31337)
@@ -2167,7 +2167,7 @@ cdef class FiniteField(Field):
2167
2167
[(a^9 + a^8 + a^6 + a^4 + a^2, 1) ]
2168
2168
sage: f. roots( multiplicities=False)
2169
2169
[a^9 + a^8 + a^6 + a^4 + a^2 ]
2170
-
2170
+
2171
2171
We can take the roots of a high degree polynomial in a reasonable time::
2172
2172
2173
2173
sage: set_random_seed( 31337)
@@ -2196,7 +2196,6 @@ cdef class FiniteField(Field):
2196
2196
g = pow (x, p, f) - x
2197
2197
g = f.gcd(g)
2198
2198
return g._roots_from_factorization(g.factor(), False )
2199
-
2200
2199
2201
2200
2202
2201
def unpickle_FiniteField_ext (_type , order , variable_name , modulus , kwargs ):
0 commit comments