11
2- def add (E , P , Q ):
2+ def _add (E , P , Q ):
33 r"""
44 Addition formulas for elliptic curves over general rings
55 with trivial Picard group.
@@ -20,14 +20,14 @@ def add(E, P, Q):
2020
2121 EXAMPLES::
2222
23- sage: from sage.schemes.elliptic_curves.addition_formulas_ring import add
23+ sage: from sage.schemes.elliptic_curves.addition_formulas_ring import _add
2424 sage: M = Zmod(13*17*19)
2525 sage: R.<U,V> = M[]
2626 sage: S.<u,v> = R.quotient(U*V - 17)
2727 sage: E = EllipticCurve(S, [1,2,3,4,5])
2828 sage: P = E(817, 13, 19)
2929 sage: Q = E(425, 123, 17)
30- sage: PQ1, PQ2 = add (E, P, Q)
30+ sage: PQ1, PQ2 = _add (E, P, Q)
3131 sage: PQ1
3232 (1188, 1674, 540)
3333 sage: PQ2
@@ -39,13 +39,13 @@ def add(E, P, Q):
3939
4040 We ensure that these formulas return the same result as the ones over a field::
4141
42- sage: from sage.schemes.elliptic_curves.addition_formulas_ring import add
42+ sage: from sage.schemes.elliptic_curves.addition_formulas_ring import _add
4343 sage: F = GF(2^127-1)
4444 sage: E = EllipticCurve(j=F.random_element())
4545 sage: E = choice(E.twists())
4646 sage: P = E.random_point()
4747 sage: Q = E.random_point()
48- sage: PQ1, PQ2 = add (E, P, Q)
48+ sage: PQ1, PQ2 = _add (E, P, Q)
4949 sage: assert E(*PQ1) == P + Q
5050 sage: assert E(*PQ2) == P + Q
5151 """
0 commit comments