@@ -544,7 +544,7 @@ def __call__(self, *args):
544
544
sage: CT = CartanType([['A',2]])
545
545
sage: CT.is_irreducible()
546
546
True
547
- sage: CT.cartan_matrix()
547
+ sage: CT.cartan_matrix() # optional - sage.graphs
548
548
[ 2 -1]
549
549
[-1 2]
550
550
sage: CT = CartanType(['A2'])
@@ -1248,7 +1248,7 @@ def subtype(self, index_set):
1248
1248
O=<=O---O=<=O
1249
1249
0 1 2 3
1250
1250
BC3~
1251
- sage: ct.subtype([1,2,3])
1251
+ sage: ct.subtype([1,2,3]) # optional - sage.graphs
1252
1252
['C', 3]
1253
1253
"""
1254
1254
return self .cartan_matrix ().subtype (index_set ).cartan_type ()
@@ -1514,8 +1514,8 @@ def _default_folded_cartan_type(self):
1514
1514
1515
1515
EXAMPLES::
1516
1516
1517
- sage: D = CartanMatrix([[2, -3], [-2, 2]]).dynkin_diagram()
1518
- sage: D._default_folded_cartan_type()
1517
+ sage: D = CartanMatrix([[2, -3], [-2, 2]]).dynkin_diagram() # optional - sage.graphs
1518
+ sage: D._default_folded_cartan_type() # optional - sage.graphs
1519
1519
Dynkin diagram of rank 2 as a folding of Dynkin diagram of rank 2
1520
1520
"""
1521
1521
from sage .combinat .root_system .type_folded import CartanTypeFolded
@@ -1556,7 +1556,7 @@ def ascii_art(self, label='lambda x: x', node=None):
1556
1556
The label option is useful to visualize various statistics on
1557
1557
the nodes of the Dynkin diagram::
1558
1558
1559
- sage: a = cartan_type.col_annihilator(); a
1559
+ sage: a = cartan_type.col_annihilator(); a # optional - sage.graphs
1560
1560
Finite family {0: 1, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2}
1561
1561
sage: print(CartanType(['B',5,1]).ascii_art(label=a.__getitem__)) # optional - sage.graphs
1562
1562
O 1
@@ -1622,7 +1622,7 @@ def cartan_matrix(self):
1622
1622
1623
1623
EXAMPLES::
1624
1624
1625
- sage: CartanType(['A',4]).cartan_matrix()
1625
+ sage: CartanType(['A',4]).cartan_matrix() # optional - sage.graphs
1626
1626
[ 2 -1 0 0]
1627
1627
[-1 2 -1 0]
1628
1628
[ 0 -1 2 -1]
@@ -1687,7 +1687,7 @@ def symmetrizer(self):
1687
1687
1688
1688
EXAMPLES::
1689
1689
1690
- sage: CartanType(["B",5]).symmetrizer()
1690
+ sage: CartanType(["B",5]).symmetrizer() # optional - sage.graphs
1691
1691
Finite family {1: 2, 2: 2, 3: 2, 4: 2, 5: 1}
1692
1692
1693
1693
Here is a neat trick to visualize it better::
@@ -2094,7 +2094,7 @@ def row_annihilator(self, m=None):
2094
2094
2095
2095
EXAMPLES::
2096
2096
2097
- sage: RootSystem(['C',2,1]).cartan_type().acheck()
2097
+ sage: RootSystem(['C',2,1]).cartan_type().acheck() # optional - sage.graphs
2098
2098
Finite family {0: 1, 1: 1, 2: 1}
2099
2099
sage: RootSystem(['D',4,1]).cartan_type().acheck()
2100
2100
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
@@ -2143,7 +2143,7 @@ def col_annihilator(self):
2143
2143
2144
2144
EXAMPLES::
2145
2145
2146
- sage: RootSystem(['C',2,1]).cartan_type().a()
2146
+ sage: RootSystem(['C',2,1]).cartan_type().a() # optional - sage.graphs
2147
2147
Finite family {0: 1, 1: 2, 2: 1}
2148
2148
sage: RootSystem(['D',4,1]).cartan_type().a()
2149
2149
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
@@ -2172,7 +2172,7 @@ def c(self):
2172
2172
2173
2173
EXAMPLES::
2174
2174
2175
- sage: RootSystem(['C',2,1]).cartan_type().c()
2175
+ sage: RootSystem(['C',2,1]).cartan_type().c() # optional - sage.graphs
2176
2176
Finite family {0: 1, 1: 2, 2: 1}
2177
2177
sage: RootSystem(['D',4,1]).cartan_type().c()
2178
2178
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
@@ -2228,7 +2228,7 @@ def translation_factors(self):
2228
2228
2229
2229
EXAMPLES::
2230
2230
2231
- sage: CartanType(['C',2,1]).translation_factors()
2231
+ sage: CartanType(['C',2,1]).translation_factors() # optional - sage.graphs
2232
2232
Finite family {0: 1, 1: 2, 2: 1}
2233
2233
sage: CartanType(['C',2,1]).dual().translation_factors()
2234
2234
Finite family {0: 1, 1: 1, 2: 1}
0 commit comments