Skip to content

Commit f853201

Browse files
author
Matthias Koeppe
committed
src/sage/topology: sage -fixdoctests --only-tags
1 parent d3e1fb5 commit f853201

File tree

5 files changed

+26
-20
lines changed

5 files changed

+26
-20
lines changed

src/sage/topology/cubical_complex.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1671,15 +1671,16 @@ def algebraic_topological_model(self, base_ring=None):
16711671
16721672
EXAMPLES::
16731673
1674+
sage: # needs sage.modules
16741675
sage: RP2 = cubical_complexes.RealProjectivePlane()
16751676
sage: phi, M = RP2.algebraic_topological_model(GF(2))
1676-
sage: M.homology() # needs sage.modules
1677+
sage: M.homology()
16771678
{0: Vector space of dimension 1 over Finite Field of size 2,
16781679
1: Vector space of dimension 1 over Finite Field of size 2,
16791680
2: Vector space of dimension 1 over Finite Field of size 2}
16801681
sage: T = cubical_complexes.Torus()
1681-
sage: phi, M = T.algebraic_topological_model(QQ) # needs sage.modules
1682-
sage: M.homology() # needs sage.modules
1682+
sage: phi, M = T.algebraic_topological_model(QQ)
1683+
sage: M.homology()
16831684
{0: Vector space of dimension 1 over Rational Field,
16841685
1: Vector space of dimension 2 over Rational Field,
16851686
2: Vector space of dimension 1 over Rational Field}

src/sage/topology/simplicial_complex.py

Lines changed: 12 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -2497,15 +2497,16 @@ def algebraic_topological_model(self, base_ring=None):
24972497
24982498
EXAMPLES::
24992499
2500+
sage: # needs sage.modules
25002501
sage: RP2 = simplicial_complexes.RealProjectivePlane()
25012502
sage: phi, M = RP2.algebraic_topological_model(GF(2))
2502-
sage: M.homology() # needs sage.modules
2503+
sage: M.homology()
25032504
{0: Vector space of dimension 1 over Finite Field of size 2,
25042505
1: Vector space of dimension 1 over Finite Field of size 2,
25052506
2: Vector space of dimension 1 over Finite Field of size 2}
25062507
sage: T = simplicial_complexes.Torus()
2507-
sage: phi, M = T.algebraic_topological_model(QQ) # needs sage.modules
2508-
sage: M.homology() # needs sage.modules
2508+
sage: phi, M = T.algebraic_topological_model(QQ)
2509+
sage: M.homology()
25092510
{0: Vector space of dimension 1 over Rational Field,
25102511
1: Vector space of dimension 2 over Rational Field,
25112512
2: Vector space of dimension 1 over Rational Field}
@@ -4904,20 +4905,21 @@ def bigraded_betti_number(self, a, b, base_ring=ZZ):
49044905
49054906
EXAMPLES::
49064907
4908+
sage: # needs sage.modules
49074909
sage: X = SimplicialComplex([[0,1],[1,2],[2,0],[1,3]])
4908-
sage: X.bigraded_betti_number(-1, 4, base_ring=QQ) # needs sage.modules
4910+
sage: X.bigraded_betti_number(-1, 4, base_ring=QQ)
49094911
2
4910-
sage: X.bigraded_betti_number(-1, 8) # needs sage.modules
4912+
sage: X.bigraded_betti_number(-1, 8)
49114913
0
49124914
sage: X.bigraded_betti_number(-2, 5)
49134915
0
49144916
sage: X.bigraded_betti_number(0, 0)
49154917
1
4916-
sage: sorted(X.bigraded_betti_numbers().items(), reverse=True) # needs sage.modules
4918+
sage: sorted(X.bigraded_betti_numbers().items(), reverse=True)
49174919
[((0, 0), 1), ((-1, 6), 1), ((-1, 4), 2), ((-2, 8), 1), ((-2, 6), 1)]
4918-
sage: X.bigraded_betti_number(-1, 4, base_ring=QQ) # needs sage.modules
4920+
sage: X.bigraded_betti_number(-1, 4, base_ring=QQ)
49194921
2
4920-
sage: X.bigraded_betti_number(-1, 8) # needs sage.modules
4922+
sage: X.bigraded_betti_number(-1, 8)
49214923
0
49224924
"""
49234925
if b % 2:
@@ -4963,6 +4965,7 @@ def is_golod(self) -> bool:
49634965
49644966
EXAMPLES::
49654967
4968+
sage: # needs sage.modules
49664969
sage: X = SimplicialComplex([[0,1],[1,2],[2,3],[3,0]])
49674970
sage: Y = SimplicialComplex([[0,1,2],[0,2],[0,4]])
49684971
sage: X.is_golod()
@@ -4990,6 +4993,7 @@ def is_minimally_non_golod(self) -> bool:
49904993
49914994
EXAMPLES::
49924995
4996+
sage: # needs sage.modules
49934997
sage: X = SimplicialComplex([[0,1],[1,2],[2,3],[3,0]])
49944998
sage: Y = SimplicialComplex([[1,2,3],[1,2,4],[3,5],[4,5]])
49954999
sage: X.is_golod()

src/sage/topology/simplicial_complex_examples.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -635,7 +635,7 @@ def PoincareHomologyThreeSphere():
635635
sage: Sigma3 = simplicial_complexes.PoincareHomologyThreeSphere()
636636
sage: S3.homology() == Sigma3.homology() # needs sage.modules
637637
True
638-
sage: Sigma3.fundamental_group().cardinality() # long time, needs sage.groups
638+
sage: Sigma3.fundamental_group().cardinality() # long time # needs sage.groups
639639
120
640640
"""
641641
return UniqueSimplicialComplex(
@@ -1323,7 +1323,7 @@ def SumComplex(n, A):
13231323
C23
13241324
sage: S = simplicial_complexes.SumComplex(11, [0, 1, 2, 3, 4, 7]); S
13251325
Sum complex on vertices Z/11Z associated to {0, 1, 2, 3, 4, 7}
1326-
sage: S.homology() # long time, needs sage.modules
1326+
sage: S.homology() # long time # needs sage.modules
13271327
{0: 0, 1: 0, 2: 0, 3: 0, 4: C645679, 5: 0}
13281328
sage: factor(645679)
13291329
23 * 67 * 419
@@ -1336,13 +1336,13 @@ def SumComplex(n, A):
13361336
3 * 53
13371337
sage: S = simplicial_complexes.SumComplex(13, [0, 1, 2, 5]); S
13381338
Sum complex on vertices Z/13Z associated to {0, 1, 2, 5}
1339-
sage: S.homology() # long time, needs sage.modules
1339+
sage: S.homology() # long time # needs sage.modules
13401340
{0: 0, 1: 0, 2: C146989209, 3: 0}
13411341
sage: factor(1648910295)
13421342
3^2 * 5 * 53 * 521 * 1327
13431343
sage: S = simplicial_complexes.SumComplex(13, [0, 1, 2, 3, 5]); S
13441344
Sum complex on vertices Z/13Z associated to {0, 1, 2, 3, 5}
1345-
sage: S.homology() # long time, needs sage.modules
1345+
sage: S.homology() # long time # needs sage.modules
13461346
{0: 0, 1: 0, 2: 0, 3: C3 x C237 x C706565607945, 4: 0}
13471347
sage: factor(706565607945) # needs sage.libs.pari
13481348
3 * 5 * 53 * 79 * 131 * 157 * 547
@@ -1361,7 +1361,7 @@ def SumComplex(n, A):
13611361
11 * 191 * 2699
13621362
sage: S = simplicial_complexes.SumComplex(31, [0, 1, 4]); S
13631363
Sum complex on vertices Z/31Z associated to {0, 1, 4}
1364-
sage: S.homology(1) # long time, needs sage.modules
1364+
sage: S.homology(1) # long time # needs sage.modules
13651365
C5 x C5 x C5 x C5 x C26951480558170926865
13661366
sage: factor(26951480558170926865) # needs sage.libs.pari
13671367
5 * 311 * 683 * 1117 * 11657 * 1948909

src/sage/topology/simplicial_set_constructions.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -946,10 +946,11 @@ def factor(self, i, as_subset=False):
946946
947947
sage: K.factor(0, as_subset=True)
948948
Simplicial set with 2 non-degenerate simplices
949-
sage: K.factor(0, as_subset=True).homology()
949+
sage: K.factor(0, as_subset=True).homology() # needs sage.modules
950950
{0: 0, 1: 0, 2: Z}
951951
952952
sage: K.factor(0) is S2
953+
....:
953954
True
954955
sage: K.factor(0, as_subset=True) is S2
955956
False
@@ -1087,7 +1088,7 @@ def wedge_as_subset(self):
10871088
sage: W = P.wedge_as_subset()
10881089
sage: W.nondegenerate_simplices()
10891090
[(v, w), (e, s_0 w), (s_0 v, f)]
1090-
sage: W.homology()
1091+
sage: W.homology() # needs sage.modules
10911092
{0: 0, 1: Z x Z}
10921093
"""
10931094
basept_factors = [sset.base_point() for sset in self.factors()]
@@ -1119,7 +1120,7 @@ def fat_wedge_as_subset(self):
11191120
sage: S1 = simplicial_sets.Sphere(1)
11201121
sage: X = S1.product(S1, S1)
11211122
sage: W = X.fat_wedge_as_subset()
1122-
sage: W.homology()
1123+
sage: W.homology() # needs sage.modules
11231124
{0: 0, 1: Z x Z x Z, 2: Z x Z x Z}
11241125
"""
11251126
basept_factors = [sset.base_point() for sset in self.factors()]

src/sage/topology/simplicial_set_examples.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -327,7 +327,7 @@ def ClassifyingSpace(group):
327327
sage: Klein4 = groups.misc.MultiplicativeAbelian([2, 2]) # needs sage.groups
328328
sage: BK = simplicial_sets.ClassifyingSpace(Klein4); BK # needs sage.groups
329329
Classifying space of Multiplicative Abelian group isomorphic to C2 x C2
330-
sage: BK.homology(range(5), base_ring=GF(2)) # long time (1 second), needs sage.groups sage.modules sage.rings.finite_rings
330+
sage: BK.homology(range(5), base_ring=GF(2)) # long time (1 second) # needs sage.groups sage.modules sage.rings.finite_rings
331331
{0: Vector space of dimension 0 over Finite Field of size 2,
332332
1: Vector space of dimension 2 over Finite Field of size 2,
333333
2: Vector space of dimension 3 over Finite Field of size 2,

0 commit comments

Comments
 (0)