@@ -2751,7 +2751,7 @@ def is_brick(self, coNP_certificate=False):
27512751
27522752 - If the input nonbipartite matching covered graph is a brick, a
27532753 boolean ``True`` is returned if ``coNP_certificate`` is set to
2754- ``False`` otherwise a 4-tuple ``(True, None, None, None)`` is
2754+ ``False``, otherwise a 4-tuple ``(True, None, None, None)`` is
27552755 returned.
27562756
27572757 - If the input nonbipartite matching covered graph is not a brick, a
@@ -2763,20 +2763,20 @@ def is_brick(self, coNP_certificate=False):
27632763
27642764 1. a boolean ``False``,
27652765
2766- 2. a list of list of edges each list constituting a nontrivial tight
2767- cut collectively representing a laminar tight cut,
2766+ 2. a list of lists of edges, each list constituting a nontrivial
2767+ tight cut collectively representing a laminar tight cut,
27682768
27692769 3. a list of set of vertices of one of the shores of those respective
2770- nontrivial tight cuts.
2770+ nontrivial tight cuts:
27712771
2772- - In case of nontrivial barrier cuts, each of the shores is a
2773- nontrivial odd component wrt a nontrivial barrier, thus the
2774- returned list forms mutually exclusive collection of (odd)
2775- sets.
2772+ #. In case of nontrivial barrier cuts, each of the shores is a
2773+ nontrivial odd component with respect to a nontrivial barrier,
2774+ thus the returned list forms mutually exclusive collection of
2775+ (odd) sets.
27762776
2777- - Otherwise each of the nontrivial tight cuts is a 2-separation
2778- cut, each of the shores form a subset sequence, with the `i`th
2779- shore being a proper subset of the `i + 1`th shore.
2777+ #. Otherwise each of the nontrivial tight cuts is a 2-separation
2778+ cut, each of the shores form a subset sequence, with the
2779+ `i` th shore being a proper subset of the `i + 1` th shore.
27802780
27812781 4. a string showing whether the nontrivial tight cuts are barrier
27822782 cuts (if the string is 'nontrivial barrier cuts'), or 2-separation
0 commit comments