@@ -669,7 +669,7 @@ def plot(self, show_box=False, colors=None):
669
669
EXAMPLES::
670
670
671
671
sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
672
- sage: PP.plot() # optional - sage.plot
672
+ sage: PP.plot() # optional - sage.plot
673
673
Graphics object consisting of 27 graphics primitives
674
674
"""
675
675
from sage .functions .trig import cos , sin
@@ -766,7 +766,7 @@ def plot3d(self, colors=None):
766
766
EXAMPLES::
767
767
768
768
sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
769
- sage: PP.plot3d() # optional - sage.plot
769
+ sage: PP.plot3d() # optional - sage.plot
770
770
Graphics3d Object
771
771
"""
772
772
if colors is None :
@@ -1491,7 +1491,7 @@ def __init__(self):
1491
1491
1492
1492
sage: from sage.combinat.plane_partition import PlanePartitions_all
1493
1493
sage: P = PlanePartitions_all()
1494
- sage: TestSuite(P).run() # long time
1494
+ sage: TestSuite(P).run()
1495
1495
"""
1496
1496
# We manually set these here rather than invoking the super().__init__().
1497
1497
# This is so DisjointUnionEnumeratedSets can make the Parent.__init__() call.
@@ -1545,7 +1545,7 @@ def __init__(self, box_size):
1545
1545
EXAMPLES::
1546
1546
1547
1547
sage: PP = PlanePartitions([4,3,2])
1548
- sage: TestSuite(PP).run()
1548
+ sage: TestSuite(PP).run() # long time
1549
1549
"""
1550
1550
super ().__init__ (box_size , category = FiniteEnumeratedSets ())
1551
1551
@@ -2828,7 +2828,7 @@ def __init__(self, box_size):
2828
2828
sage: TestSuite(PP).run()
2829
2829
2830
2830
sage: PP = PlanePartitions([4, 4, 2], symmetry='SSCPP')
2831
- sage: TestSuite(PP).run() # long time
2831
+ sage: TestSuite(PP).run()
2832
2832
2833
2833
sage: PlanePartitions([4, 2, 2], symmetry='SSCPP')
2834
2834
Traceback (most recent call last):
0 commit comments