diff --git a/src/sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py b/src/sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py index 1abce4b5c76..be7d5766b27 100644 --- a/src/sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py +++ b/src/sage/algebras/lie_conformal_algebras/n2_lie_conformal_algebra.py @@ -80,7 +80,7 @@ def __init__(self, R): TESTS:: sage: V = lie_conformal_algebras.N2(QQ) - sage: TestSuite(V).run() + sage: TestSuite(V).run() # long time (:issue:`39569`) """ n2dict = {('L', 'L'): {0: {('L', 1): 1}, 1: {('L', 0): 2}, diff --git a/src/sage/geometry/hyperplane_arrangement/ordered_arrangement.py b/src/sage/geometry/hyperplane_arrangement/ordered_arrangement.py index 87774ec64ab..f9359133882 100644 --- a/src/sage/geometry/hyperplane_arrangement/ordered_arrangement.py +++ b/src/sage/geometry/hyperplane_arrangement/ordered_arrangement.py @@ -400,13 +400,13 @@ def projective_fundamental_group(self): (0, 0, 0, 0, 0) sage: A4. = OrderedHyperplaneArrangements(QQ) sage: H = A4(hyperplane_arrangements.braid(4)) - sage: G4 = H.projective_fundamental_group(); G4.sorted_presentation() + sage: G4 = H.projective_fundamental_group(); G4.sorted_presentation() # long time (:issue:`39569`) Finitely presented group < x0, x1, x2, x3, x4 | x4^-1*x3^-1*x2^-1*x3*x4*x0*x2*x0^-1, x4^-1*x2^-1*x4*x2, x4^-1*x1^-1*x0^-1*x1*x4*x0, x4^-1*x1^-1*x0^-1*x4*x0*x1, x3^-1*x2^-1*x1^-1*x0^-1*x3*x0*x1*x2, x3^-1*x1^-1*x3*x1 > - sage: G4.abelian_invariants() + sage: G4.abelian_invariants() # long time (:issue:`39569`) (0, 0, 0, 0, 0) sage: # needs sirocco diff --git a/src/sage/graphs/graph_decompositions/modular_decomposition.pyx b/src/sage/graphs/graph_decompositions/modular_decomposition.pyx index d542df21d51..595ced0124a 100644 --- a/src/sage/graphs/graph_decompositions/modular_decomposition.pyx +++ b/src/sage/graphs/graph_decompositions/modular_decomposition.pyx @@ -84,7 +84,7 @@ def corneil_habib_paul_tedder_algorithm(G): ....: 3, 4, 0.2) sage: recreate_decomposition(10, corneil_habib_paul_tedder_algorithm, ....: 4, 5, 0.2) - sage: recreate_decomposition(3, corneil_habib_paul_tedder_algorithm, + sage: recreate_decomposition(3, corneil_habib_paul_tedder_algorithm, # long time (:issue:`39569`) ....: 6, 5, 0.2) sage: H = Graph('Hv|mmjz', format='graph6') diff --git a/src/sage/graphs/independent_sets.pyx b/src/sage/graphs/independent_sets.pyx index c880d9df424..e46921b2c82 100644 --- a/src/sage/graphs/independent_sets.pyx +++ b/src/sage/graphs/independent_sets.pyx @@ -161,7 +161,7 @@ cdef class IndependentSets: ....: IS2.extend(map(Set, list(G.subgraph_search_iterator(Graph(n), induced=True, return_graphs=False)))) ....: if len(IS) != len(set(IS2)): ....: raise ValueError("something goes wrong") - sage: for i in range(5): # needs sage.modules + sage: for i in range(5): # needs sage.modules, long time (:issue:`39569`) ....: check_with_subgraph_search(graphs.RandomGNP(11, .3)) Empty graph:: diff --git a/src/sage/interfaces/maxima_abstract.py b/src/sage/interfaces/maxima_abstract.py index 234e9373fca..dab8e641e3a 100644 --- a/src/sage/interfaces/maxima_abstract.py +++ b/src/sage/interfaces/maxima_abstract.py @@ -304,7 +304,7 @@ def _commands(self, verbose=True): EXAMPLES:: # The output is kind of random - sage: sorted(maxima._commands(verbose=False)) + sage: sorted(maxima._commands(verbose=False)) # long time (:issue:`39569`) [... 'display', ... diff --git a/src/sage/libs/singular/polynomial.pyx b/src/sage/libs/singular/polynomial.pyx index 277b4f36f1b..bf203f2786b 100644 --- a/src/sage/libs/singular/polynomial.pyx +++ b/src/sage/libs/singular/polynomial.pyx @@ -270,6 +270,7 @@ cdef int singular_polynomial_cmp(poly *p, poly *q, ring *r) noexcept: :: + sage: # long time (:issue:`39569`) sage: R. = Integers(10)[] sage: l = [i*x+j*y+k for i in range(10) for j in range(10) for k in range(10)] sage: l.sort() diff --git a/src/sage/modular/modform/element.py b/src/sage/modular/modform/element.py index 4ba86a13e26..984ec1c8260 100644 --- a/src/sage/modular/modform/element.py +++ b/src/sage/modular/modform/element.py @@ -2760,6 +2760,7 @@ def _pow_int(self, n): Testing modular forms of nontrivial character:: + sage: # long time (:issue:`39569`) sage: F = ModularForms(DirichletGroup(17).0^2, 2).2 sage: F3 = F^3; F3 q^3 + (-3*zeta8^2 + 6)*q^4 + (-12*zeta8^2 + 3*zeta8 + 18)*q^5 + O(q^6) diff --git a/src/sage/rings/function_field/khuri_makdisi.pyx b/src/sage/rings/function_field/khuri_makdisi.pyx index fefd9b270ca..524489064d2 100644 --- a/src/sage/rings/function_field/khuri_makdisi.pyx +++ b/src/sage/rings/function_field/khuri_makdisi.pyx @@ -820,6 +820,7 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base): Check that :issue:`40237` is fixed:: + sage: # long time (:issue:`39569`) sage: K = GF(2) sage: F. = FunctionField(K) sage: t = polygen(F) @@ -873,6 +874,7 @@ cdef class KhuriMakdisi_small(KhuriMakdisi_base): Check that :issue:`39148` is fixed:: + sage: # long time (:issue:`39569`) sage: k. = FunctionField(GF(17)); t = polygen(k) sage: F. = k.extension(t^4 + (14*x + 14)*t^3 + 9*t^2 + (10*x^2 + 15*x + 8)*t ....: + 7*x^3 + 15*x^2 + 6*x + 16) diff --git a/src/sage/rings/number_field/number_field_element.pyx b/src/sage/rings/number_field/number_field_element.pyx index 1904f10417a..176df02dd44 100644 --- a/src/sage/rings/number_field/number_field_element.pyx +++ b/src/sage/rings/number_field/number_field_element.pyx @@ -507,7 +507,7 @@ cdef class NumberFieldElement(NumberFieldElement_base): Check that :issue:`15276` is fixed:: - sage: for n in range(2,20): # needs sage.libs.gap + sage: for n in range(2,20): # needs sage.libs.gap, long time (:issue:`39569`) ....: K = CyclotomicField(n) ....: assert K(gap(K.gen())) == K.gen(), "n = {}".format(n) ....: assert K(gap(K.one())) == K.one(), "n = {}".format(n) diff --git a/src/sage/rings/semirings/tropical_mpolynomial.py b/src/sage/rings/semirings/tropical_mpolynomial.py index d5f5a9d2e43..d1017cac389 100644 --- a/src/sage/rings/semirings/tropical_mpolynomial.py +++ b/src/sage/rings/semirings/tropical_mpolynomial.py @@ -543,6 +543,7 @@ def dual_subdivision(self): A subdivision with many faces, not all of which are triangles:: + sage: # long time (:issue:`39569`) sage: T = TropicalSemiring(QQ) sage: R. = PolynomialRing(T) sage: p3 = (R(8) + R(4)*x + R(2)*y + R(1)*x^2 + x*y + R(1)*y^2 @@ -578,6 +579,7 @@ def dual_subdivision(self): Dual subdivision of a tropical surface:: + sage: # long time (:issue:`39569`) sage: T = TropicalSemiring(QQ) sage: R. = PolynomialRing(T) sage: p1 = x + y + z + x^2 + R(1) diff --git a/src/sage/rings/semirings/tropical_variety.py b/src/sage/rings/semirings/tropical_variety.py index ab8e3d4d19d..e4e1daa46ab 100644 --- a/src/sage/rings/semirings/tropical_variety.py +++ b/src/sage/rings/semirings/tropical_variety.py @@ -589,7 +589,7 @@ def weight_vectors(self): sage: T = TropicalSemiring(QQ) sage: R. = PolynomialRing(T) sage: f = R.random_element() - sage: vec = f.tropical_variety().weight_vectors()[2].values() + sage: vec = f.tropical_variety().weight_vectors()[2].values() # long time (:issue:`39569`) sage: all(a == vector([0,0,0,0]) for a in [sum(lst) for lst in vec]) # not tested (:issue:`39663`) True """ diff --git a/src/sage/schemes/curves/plane_curve_arrangement.py b/src/sage/schemes/curves/plane_curve_arrangement.py index 954472886f7..94dca9668ac 100644 --- a/src/sage/schemes/curves/plane_curve_arrangement.py +++ b/src/sage/schemes/curves/plane_curve_arrangement.py @@ -528,8 +528,8 @@ def fundamental_group(self, simplified=True, vertical=True, sage: A.meridians(simplified=False, vertical=False) {0: [x2, x3], 1: [x1], 2: [x0], 3: [x3^-1*x2^-1*x1^-1*x0^-1]} sage: A = H(x * y^2 + x + y, y + x -1, x, y) - sage: G = A.fundamental_group() - sage: G.sorted_presentation() + sage: G = A.fundamental_group() # long time (:issue:`39569`) + sage: G.sorted_presentation() # long time (:issue:`39569`) Finitely presented group < x0, x1, x2, x3 | x3^-1*x2^-1*x3*x2, x3^-1*x1^-1*x3*x1, x3^-1*x0^-1*x3*x0, x2^-1*x1^-1*x2*x1, diff --git a/src/sage/schemes/curves/projective_curve.py b/src/sage/schemes/curves/projective_curve.py index 09fb3ffd3db..fc8f90b3891 100644 --- a/src/sage/schemes/curves/projective_curve.py +++ b/src/sage/schemes/curves/projective_curve.py @@ -1804,8 +1804,8 @@ def fundamental_group(self): sage: C = P.curve(z^2*y^3 - z*(33*x*z+2*x^2+8*z^2)*y^2 ....: + (21*z^2+21*x*z-x^2)*(z^2+11*x*z-x^2)*y ....: + (x-18*z)*(z^2+11*x*z-x^2)^2) - sage: G0 = C.fundamental_group() # needs sirocco - sage: G.is_isomorphic(G0) # needs sirocco + sage: G0 = C.fundamental_group() # needs sirocco, long time (:issue:`39569`) + sage: G.is_isomorphic(G0) # needs sirocco, long time (:issue:`39569`) True sage: C = P.curve(z) sage: C.fundamental_group() # needs sirocco diff --git a/src/sage/schemes/elliptic_curves/ell_field.py b/src/sage/schemes/elliptic_curves/ell_field.py index 7be99a4faf9..f3008b44989 100644 --- a/src/sage/schemes/elliptic_curves/ell_field.py +++ b/src/sage/schemes/elliptic_curves/ell_field.py @@ -2116,7 +2116,7 @@ def isogenies_degree(self, n, *, _intermediate=False): :: sage: E = EllipticCurve(GF(next_prime(2^32)), j=1728) - sage: sorted([phi.codomain().j_invariant() for phi in E.isogenies_degree(11 * 17 * 19^2)]) + sage: sorted([phi.codomain().j_invariant() for phi in E.isogenies_degree(11 * 17 * 19^2)]) # long time (:issue:`39569`) [1348157279, 1348157279, 1713365879, 1713365879, 3153894341, 3153894341, 3225140514, 3225140514, 3673460198, 3673460198, 3994312564, 3994312564] sage: it = E.isogenies_degree(2^2); it @@ -2187,7 +2187,7 @@ def isogenies_degree(self, n, *, _intermediate=False): To: Elliptic Curve defined by y^2 = x^3 + 4294967267*x + 112 over Finite Field of size 4294967311] sage: all(isog.domain() is E for isog in _) True - sage: all(isog.domain() is E for isog in E.isogenies_degree(2^5, _intermediate=True)) + sage: all(isog.domain() is E for isog in E.isogenies_degree(2^5, _intermediate=True)) # long time (:issue:`39569`) True The following curve has no degree-`53` isogenies, so the code is quick:: diff --git a/src/sage/schemes/elliptic_curves/ell_generic.py b/src/sage/schemes/elliptic_curves/ell_generic.py index 5f560c566b9..82074e11fac 100644 --- a/src/sage/schemes/elliptic_curves/ell_generic.py +++ b/src/sage/schemes/elliptic_curves/ell_generic.py @@ -2476,6 +2476,8 @@ def multiplication_by_m(self, m, x_only=False): sage: assert(E(eval(f,P)) == 2*P) The following test shows that :issue:`6413` is fixed for elliptic curves over finite fields:: + + sage: # long time (:issue:`39569`) sage: p = 7 sage: K. = GF(p^2) sage: E = EllipticCurve(K, [a + 3, 5 - a]) diff --git a/src/sage/schemes/elliptic_curves/hom_composite.py b/src/sage/schemes/elliptic_curves/hom_composite.py index edcca9f7269..dd5fc124e2e 100644 --- a/src/sage/schemes/elliptic_curves/hom_composite.py +++ b/src/sage/schemes/elliptic_curves/hom_composite.py @@ -187,7 +187,7 @@ def _compute_factored_isogeny_prime_power(P, l, n, split=.8, velu_sqrt_bound=Non All choices of ``split`` produce the same result, albeit not equally fast:: - sage: # needs sage.rings.finite_rings + sage: # needs sage.rings.finite_rings, long time (:issue:`39569`) sage: E = EllipticCurve(GF(2^127 - 1), [1,0]) sage: P, = E.gens() sage: (l,n), = P.order().factor() diff --git a/src/sage/symbolic/expression.pyx b/src/sage/symbolic/expression.pyx index dc59841b816..2ca1d7aab87 100644 --- a/src/sage/symbolic/expression.pyx +++ b/src/sage/symbolic/expression.pyx @@ -13221,7 +13221,7 @@ cdef class Expression(Expression_abc): answer:: sage: f = ln(1+4/5*sin(x)) - sage: integrate(f, x, -3.1415, 3.1415) # random + sage: integrate(f, x, -3.1415, 3.1415) # random, long time (:issue:`39569`) integrate(log(4/5*sin(x) + 1), x, -3.14150000000000, 3.14150000000000) sage: # needs sage.libs.giac