diff --git a/src/sage/combinat/abstract_tree.py b/src/sage/combinat/abstract_tree.py index 71ddb9903bb..bea0504a86f 100644 --- a/src/sage/combinat/abstract_tree.py +++ b/src/sage/combinat/abstract_tree.py @@ -187,7 +187,7 @@ def pre_order_traversal_iter(self): sage: v = BinaryTree([u, u]) sage: w = BinaryTree([v, v]) sage: t = BinaryTree([w, w]) - sage: t.node_number() + sage: t.n_nodes() 7 sage: l = [1 for i in t.pre_order_traversal_iter()] sage: len(l) @@ -259,7 +259,7 @@ def iterative_pre_order_traversal(self, action=None): sage: v = BinaryTree([u, u]) sage: w = BinaryTree([v, v]) sage: t = BinaryTree([w, w]) - sage: t.node_number() + sage: t.n_nodes() 7 sage: l = [] sage: t.iterative_pre_order_traversal(lambda node: l.append(1)) @@ -376,7 +376,7 @@ def pre_order_traversal(self, action=None): sage: v = BinaryTree([u, u]) sage: w = BinaryTree([v, v]) sage: t = BinaryTree([w, w]) - sage: t.node_number() + sage: t.n_nodes() 7 sage: l = [] sage: t.pre_order_traversal(lambda node: l.append(1)) @@ -471,7 +471,7 @@ def post_order_traversal_iter(self): sage: v = BinaryTree([u, u]) sage: w = BinaryTree([v, v]) sage: t = BinaryTree([w, w]) - sage: t.node_number() + sage: t.n_nodes() 7 sage: l = [1 for i in t.post_order_traversal_iter()] sage: len(l) @@ -543,7 +543,7 @@ def post_order_traversal(self, action=None): sage: v = BinaryTree([u, u]) sage: w = BinaryTree([v, v]) sage: t = BinaryTree([w, w]) - sage: t.node_number() + sage: t.n_nodes() 7 sage: l = [] sage: t.post_order_traversal(lambda node: l.append(1)) @@ -617,7 +617,7 @@ def iterative_post_order_traversal(self, action=None): sage: v = BinaryTree([u, u]) sage: w = BinaryTree([v, v]) sage: t = BinaryTree([w, w]) - sage: t.node_number() + sage: t.n_nodes() 7 sage: l = [] sage: t.iterative_post_order_traversal(lambda node: l.append(1)) @@ -710,7 +710,7 @@ def contour_traversal(self, first_action=None, middle_action=None, final_action= sage: v = BinaryTree([u, u]) sage: w = BinaryTree([v, v]) sage: t = BinaryTree([w, w]) - sage: t.node_number() + sage: t.n_nodes() 7 sage: l = [] sage: t.contour_traversal(first_action = lambda node: l.append(0)) @@ -852,7 +852,7 @@ def paths_at_depth(self, depth, path=[]): .. SEEALSO:: - :meth:`paths`, :meth:`paths_to_the_right`, :meth:`node_number_at_depth` + :meth:`paths`, :meth:`paths_to_the_right`, :meth:`number_of_nodes_at_depth` EXAMPLES:: @@ -886,7 +886,7 @@ def paths_at_depth(self, depth, path=[]): for i in range(len(self)): yield from self[i].paths_at_depth(depth - 1, path + [i]) - def node_number_at_depth(self, depth): + def number_of_nodes_at_depth(self, depth): r""" Return the number of nodes at a given depth. @@ -900,7 +900,7 @@ def node_number_at_depth(self, depth): .. SEEALSO:: - :meth:`node_number`, :meth:`node_number_to_the_right`, :meth:`paths_at_depth` + :meth:`n_nodes`, :meth:`number_of_nodes_to_the_right`, :meth:`paths_at_depth` EXAMPLES:: @@ -915,7 +915,7 @@ def node_number_at_depth(self, depth): o o | o - sage: [T.node_number_at_depth(i) for i in range(6)] + sage: [T.number_of_nodes_at_depth(i) for i in range(6)] [1, 3, 4, 2, 1, 0] TESTS: @@ -927,7 +927,7 @@ def node_number_at_depth(self, depth): . sage: T.is_empty() True - sage: [T.node_number_at_depth(i) for i in range(3)] + sage: [T.number_of_nodes_at_depth(i) for i in range(3)] [0, 0, 0] Check that we do not hit a recursion limit:: @@ -935,7 +935,7 @@ def node_number_at_depth(self, depth): sage: T = OrderedTree([]) sage: for _ in range(9999): ....: T = OrderedTree([T]) - sage: T.node_number_at_depth(2000) + sage: T.number_of_nodes_at_depth(2000) 1 """ if self.is_empty(): @@ -965,6 +965,8 @@ def lf_action(node): self.contour_traversal(fr_action, m_action, fn_action, lf_action) return Integer(m) + node_number_at_depth = number_of_nodes_at_depth + def paths_to_the_right(self, path): r""" Return a generator of paths for all nodes at the same @@ -979,7 +981,7 @@ def paths_to_the_right(self, path): .. SEEALSO:: - :meth:`paths`, :meth:`paths_at_depth`, :meth:`node_number_to_the_right` + :meth:`paths`, :meth:`paths_at_depth`, :meth:`number_of_nodes_to_the_right` EXAMPLES:: @@ -1023,7 +1025,7 @@ def paths_to_the_right(self, path): for p in self[path[0]].paths_to_the_right(path[1:]): yield tuple([path[0]] + list(p)) - def node_number_to_the_right(self, path): + def number_of_nodes_to_the_right(self, path): r""" Return the number of nodes at the same depth and to the right of the node identified by ``path``. @@ -1033,7 +1035,7 @@ def node_number_to_the_right(self, path): .. SEEALSO:: - :meth:`node_number`, :meth:`node_number_at_depth`, :meth:`paths_to_the_right` + :meth:`n_nodes`, :meth:`number_of_nodes_at_depth`, :meth:`paths_to_the_right` EXAMPLES:: @@ -1048,28 +1050,30 @@ def node_number_to_the_right(self, path): o o | o - sage: T.node_number_to_the_right(()) + sage: T.number_of_nodes_to_the_right(()) 0 - sage: T.node_number_to_the_right((0,)) + sage: T.number_of_nodes_to_the_right((0,)) 2 - sage: T.node_number_to_the_right((0,1)) + sage: T.number_of_nodes_to_the_right((0,1)) 2 - sage: T.node_number_to_the_right((0,1,0)) + sage: T.number_of_nodes_to_the_right((0,1,0)) 1 sage: T = OrderedTree([]) - sage: T.node_number_to_the_right(()) + sage: T.number_of_nodes_to_the_right(()) 0 """ depth = len(path) if depth == 0: return Integer(0) - result = sum(son.node_number_at_depth(depth - 1) + result = sum(son.number_of_nodes_at_depth(depth - 1) for son in self[path[0] + 1:]) if path[0] < len(self) and path[0] >= 0: - result += self[path[0]].node_number_to_the_right(path[1:]) + result += self[path[0]].number_of_nodes_to_the_right(path[1:]) return result + node_number_to_the_right = number_of_nodes_to_the_right + def subtrees(self): """ Return a generator for all nonempty subtrees of ``self``. @@ -1099,12 +1103,12 @@ def subtrees(self): TESTS:: sage: t = OrderedTree([[], [[], [[], []], [[], []]], [[], []]]) - sage: t.node_number() == len(list(t.subtrees())) + sage: t.n_nodes() == len(list(t.subtrees())) True sage: list(BinaryTree().subtrees()) [] sage: bt = BinaryTree([[],[[],[]]]) - sage: bt.node_number() == len(list(bt.subtrees())) + sage: bt.n_nodes() == len(list(bt.subtrees())) True """ return self.pre_order_traversal_iter() @@ -1142,12 +1146,12 @@ def paths(self): TESTS:: sage: t = OrderedTree([[], [[], [[], []], [[], []]], [[], []]]) - sage: t.node_number() == len(list(t.paths())) + sage: t.n_nodes() == len(list(t.paths())) True sage: list(BinaryTree().paths()) [] sage: bt = BinaryTree([[],[[],[]]]) - sage: bt.node_number() == len(list(bt.paths())) + sage: bt.n_nodes() == len(list(bt.paths())) True """ if not self.is_empty(): @@ -1156,36 +1160,36 @@ def paths(self): for p in t.paths(): yield (i,) + p - def node_number(self): + def n_nodes(self): """ Return the number of nodes of ``self``. .. SEEALSO:: - :meth:`node_number_at_depth`, :meth:`node_number_to_the_right` + :meth:`number_of_nodes_at_depth`, :meth:`number_of_nodes_to_the_right` EXAMPLES:: - sage: OrderedTree().node_number() + sage: OrderedTree().n_nodes() 1 - sage: OrderedTree([]).node_number() + sage: OrderedTree([]).n_nodes() 1 - sage: OrderedTree([[],[]]).node_number() + sage: OrderedTree([[],[]]).n_nodes() 3 - sage: OrderedTree([[],[[]]]).node_number() + sage: OrderedTree([[],[[]]]).n_nodes() 4 - sage: OrderedTree([[], [[], [[], []], [[], []]], [[], []]]).node_number() + sage: OrderedTree([[], [[], [[], []], [[], []]], [[], []]]).n_nodes() 13 EXAMPLES:: - sage: BinaryTree(None).node_number() + sage: BinaryTree(None).n_nodes() 0 - sage: BinaryTree([]).node_number() + sage: BinaryTree([]).n_nodes() 1 - sage: BinaryTree([[], None]).node_number() + sage: BinaryTree([[], None]).n_nodes() 2 - sage: BinaryTree([[None, [[], []]], None]).node_number() + sage: BinaryTree([[None, [[], []]], None]).n_nodes() 5 TESTS: @@ -1195,7 +1199,7 @@ def node_number(self): sage: T = OrderedTree([]) sage: for _ in range(9999): ....: T = OrderedTree([T]) - sage: T.node_number() + sage: T.n_nodes() 10000 """ count = 0 @@ -1207,6 +1211,8 @@ def incr(node): self.iterative_pre_order_traversal(incr) return Integer(count) + node_number = n_nodes + def depth(self): """ Return the depth of ``self``. @@ -1523,7 +1529,7 @@ def canonical_labelling(self, shift=1): deca = 1 for subtree in self: liste += [subtree.canonical_labelling(shift + deca)] - deca += subtree.node_number() + deca += subtree.n_nodes() return LTR._element_constructor_(liste, label=shift) def to_hexacode(self): @@ -1566,7 +1572,7 @@ def to_hexacode(self): """ if len(self) > 15: raise ValueError("the width of the tree is too large") - if self.node_number() == 1: + if self.n_nodes() == 1: return "0" return ("%x" % len(self)) + "".join(u.to_hexacode() for u in self) @@ -1594,7 +1600,7 @@ def tree_factorial(self): sage: BinaryTree().tree_factorial() 1 """ - nb = self.node_number() + nb = self.n_nodes() if nb <= 1: return Integer(1) return nb * prod(s.tree_factorial() for s in self) @@ -2359,7 +2365,7 @@ def leaf_labels(self): sage: LBT(None).leaf_labels() [] """ - return [t.label() for t in self.subtrees() if t.node_number() == 1] + return [t.label() for t in self.subtrees() if t.n_nodes() == 1] def __eq__(self, other): """ diff --git a/src/sage/combinat/bijectionist.py b/src/sage/combinat/bijectionist.py index 1404d9cc86b..617f167813e 100644 --- a/src/sage/combinat/bijectionist.py +++ b/src/sage/combinat/bijectionist.py @@ -156,7 +156,7 @@ ....: else: ....: return m+1 sage: bij = Bijectionist(A, B, tau) - sage: bij.set_statistics((lambda a: a.size(), lambda b: b.node_number()-1)) + sage: bij.set_statistics((lambda a: a.size(), lambda b: b.n_nodes()-1)) sage: from sage.combinat.cyclic_sieving_phenomenon import orbit_decomposition sage: bij.set_constant_blocks(orbit_decomposition(A, theta)) sage: list(bij.solutions_iterator()) @@ -173,7 +173,7 @@ ....: B2.to_dyck_word()).to_binary_tree() sage: bij = Bijectionist(A, B) sage: bij.set_intertwining_relations((2, concat_path, concat_tree)) - sage: bij.set_statistics((lambda d: d.semilength(), lambda t: t.node_number())) + sage: bij.set_statistics((lambda d: d.semilength(), lambda t: t.n_nodes())) sage: for D in sorted(bij.minimal_subdistributions_iterator(), key=lambda x: (len(x[0][0]), x)): ....: ascii_art(D) ( [ /\ ], [ o ] ) diff --git a/src/sage/combinat/binary_tree.py b/src/sage/combinat/binary_tree.py index 6274bf72474..3f7c26b263e 100644 --- a/src/sage/combinat/binary_tree.py +++ b/src/sage/combinat/binary_tree.py @@ -766,7 +766,7 @@ def rec(tr, idx): emb[idx] = [] return else: # tr is a node. - nbl = 2 * tr[0].node_number() + 1 + nbl = 2 * tr[0].n_nodes() + 1 res.add_edges([[idx, idx + 1], [idx, idx + 1 + nbl]]) emb[idx] = [idx + 1 + nbl, idx + 1] rec(tr[0], idx + 1) @@ -785,7 +785,7 @@ def rec(tr, idx): # In this case, the general DiGraph construction would # falsely yield an empty graph (since it adds nodes only # implicitly by adding edges). - if self.node_number() == 1: + if self.n_nodes() == 1: res = DiGraph({0: []}) res.set_embedding({0: []}) return res @@ -799,14 +799,14 @@ def rec(tr, idx): if not tr: # tr is a leaf. return else: # tr is a node. - nbl = tr[0].node_number() + nbl = tr[0].n_nodes() if nbl > 0: res.add_edge([idx, idx + 1]) emb[idx] = [idx + 1] rec(tr[0], idx + 1) else: emb[idx] = [] - if tr[1].node_number() > 0: + if tr[1].n_nodes() > 0: res.add_edge([idx, idx + nbl + 1]) emb[idx] = [idx + nbl + 1] + emb[idx] rec(tr[1], idx + nbl + 1) @@ -840,7 +840,7 @@ def canonical_labelling(self, shift=1): """ LTR = self.parent().labelled_trees() if self: - sz0 = self[0].node_number() + sz0 = self[0].n_nodes() return LTR([self[0].canonical_labelling(shift), self[1].canonical_labelling(shift + 1 + sz0)], label=shift + sz0) @@ -1400,7 +1400,7 @@ def _postfix_word(self, left_first=True, start=1): if not self: return [] left = self[0]._postfix_word(left_first, start) - label = start + self[0].node_number() + label = start + self[0].n_nodes() right = self[1]._postfix_word(left_first, start=label + 1) if left_first: left.extend(right) @@ -1618,7 +1618,7 @@ def to_tilting(self): sage: w = DyckWord([1,1,1,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0,0]) # needs sage.combinat sage: t2 = w.to_binary_tree() # needs sage.combinat - sage: len(t2.to_tilting()) == t2.node_number() # needs sage.combinat + sage: len(t2.to_tilting()) == t2.n_nodes() # needs sage.combinat True """ if not self: @@ -1749,7 +1749,7 @@ def to_132_avoiding_permutation(self): from sage.combinat.permutation import Permutation return Permutation(self._postfix_word(left_first=False)) - def left_children_node_number(self, direction='left'): + def number_of_left_nodes(self, direction='left'): r""" Return the number of nodes which are left children in ``self``. @@ -1774,34 +1774,34 @@ def left_children_node_number(self, direction='left'): o o / \ / o o o - sage: bt.left_children_node_number('left') + sage: bt.number_of_left_nodes('left') 3 - sage: bt.left_children_node_number('right') + sage: bt.number_of_left_nodes('right') 4 - sage: all(5 == 1 + bt.left_children_node_number() - ....: + bt.left_children_node_number('right') + sage: all(5 == 1 + bt.number_of_left_nodes() + ....: + bt.number_of_left_nodes('right') ....: for bt in BinaryTrees(5)) True TESTS:: - sage: BinaryTree([[],None]).left_children_node_number() + sage: BinaryTree([[],None]).number_of_left_nodes() 1 - sage: BinaryTree([None,[]]).left_children_node_number() + sage: BinaryTree([None,[]]).number_of_left_nodes() 0 - sage: BinaryTree([]).left_children_node_number() + sage: BinaryTree([]).number_of_left_nodes() 0 - sage: BinaryTree().left_children_node_number() + sage: BinaryTree().number_of_left_nodes() 0 - sage: BinaryTree([[],None]).left_children_node_number('right') + sage: BinaryTree([[],None]).number_of_left_nodes('right') 0 - sage: BinaryTree([None,[]]).left_children_node_number('right') + sage: BinaryTree([None,[]]).number_of_left_nodes('right') 1 - sage: BinaryTree([]).left_children_node_number('right') + sage: BinaryTree([]).number_of_left_nodes('right') 0 - sage: BinaryTree().left_children_node_number('right') + sage: BinaryTree().number_of_left_nodes('right') 0 """ if self.is_empty(): @@ -1810,13 +1810,15 @@ def left_children_node_number(self, direction='left'): if self[0]: if direction == 'left': res += 1 - res += self[0].left_children_node_number(direction) + res += self[0].number_of_left_nodes(direction) if self[1]: if direction == 'right': res += 1 - res += self[1].left_children_node_number(direction) + res += self[1].number_of_left_nodes(direction) return res + left_children_node_number = number_of_left_nodes + @combinatorial_map(order=2, name="Left-right symmetry") def left_right_symmetry(self): r""" @@ -2500,8 +2502,8 @@ def single_edge_cut_shapes(self): """ resu = [] left, right = list(self) - L = left.node_number() - R = right.node_number() + L = left.n_nodes() + R = right.n_nodes() if L: resu += [(m + R + 1, i, n) for m, i, n in left.single_edge_cut_shapes()] @@ -2711,7 +2713,7 @@ def twisting_number(self): [1, 1] """ tn = [0, 0] - if self.node_number() <= 1: + if self.n_nodes() <= 1: return tn L = self.comb('left') @@ -2894,16 +2896,16 @@ def product_of_subtrees(b): return basering.one() b0 = b[0] b1 = b[1] - return q_binomial(b.node_number() - 1, b0.node_number(), q=q) * \ + return q_binomial(b.n_nodes() - 1, b0.n_nodes(), q=q) * \ product_of_subtrees(b0) * product_of_subtrees(b1) * \ - q ** (b1.node_number()) + q ** (b1.n_nodes()) else: def product_of_subtrees(b): if b.is_empty(): return basering.one() b0 = b[0] b1 = b[1] - return q_binomial(b.node_number() - 1, b0.node_number(), q=q) * \ + return q_binomial(b.n_nodes() - 1, b0.n_nodes(), q=q) * \ product_of_subtrees(b0) * product_of_subtrees(b1) return product_of_subtrees(self) @@ -3599,7 +3601,7 @@ def builder(i, p): def builder(i, p): return list(p) + [i] - shift = self[0].node_number() + 1 + shift = self[0].n_nodes() + 1 for l, r in product(self[0].sylvester_class(left_to_right=left_to_right), self[1].sylvester_class(left_to_right=left_to_right)): for p in shuffle(W(l), W([shift + ri for ri in r])): @@ -3820,7 +3822,7 @@ def is_perfect(self): [ / \ / \ ] [ o o o o ] """ - return 2 ** self.depth() - 1 == self.node_number() + return 2 ** self.depth() - 1 == self.n_nodes() def is_complete(self): r""" @@ -4209,7 +4211,7 @@ def __contains__(self, x): sage: S([[],[]]) in S True """ - return isinstance(x, BinaryTree) and x.node_number() == self._size + return isinstance(x, BinaryTree) and x.n_nodes() == self._size def _an_element_(self): """ @@ -4302,7 +4304,7 @@ def _element_constructor_(self, *args, **keywords): [., .] """ res = BinaryTree(*args, **keywords) - if res.node_number() != self._size: + if res.n_nodes() != self._size: raise ValueError("wrong number of nodes") return res @@ -4450,7 +4452,7 @@ def __contains__(self, x): False """ return (isinstance(x, BinaryTree) - and x.node_number() == self._size + and x.n_nodes() == self._size and x.is_full()) def _an_element_(self): @@ -4572,7 +4574,7 @@ def _element_constructor_(self, *args, **keywords): ValueError: not full """ res = BinaryTree(*args, **keywords) - if res.node_number() != self._size: + if res.n_nodes() != self._size: raise ValueError("wrong number of nodes") if not res.is_full(): raise ValueError("not full") diff --git a/src/sage/combinat/free_dendriform_algebra.py b/src/sage/combinat/free_dendriform_algebra.py index 92255248cc8..148111ceca8 100644 --- a/src/sage/combinat/free_dendriform_algebra.py +++ b/src/sage/combinat/free_dendriform_algebra.py @@ -313,7 +313,7 @@ def degree_on_basis(self, t): sage: A.degree_on_basis(u.over(u)) 2 """ - return t.node_number() + return t.n_nodes() def _an_element_(self): """ @@ -627,7 +627,7 @@ def coproduct_on_basis(self, x): """ B = self.basis() Trees = B.keys() - if not x.node_number(): + if not x.n_nodes(): return self.one().tensor(self.one()) L, R = list(x) try: diff --git a/src/sage/combinat/free_prelie_algebra.py b/src/sage/combinat/free_prelie_algebra.py index f892a69a69d..da7dd92e6fb 100644 --- a/src/sage/combinat/free_prelie_algebra.py +++ b/src/sage/combinat/free_prelie_algebra.py @@ -373,7 +373,7 @@ def degree_on_basis(self, t): sage: A.degree_on_basis(RT([RT([])])) 2 """ - return t.node_number() + return t.n_nodes() def _an_element_(self): """ @@ -609,7 +609,7 @@ def corolla(self, x, y, n, N): resu = self.zero() for k in range(min_deg, N + 1): # total degree of (x ; y, y, y, y) for mx, coef_x in xx: - dx = mx.node_number() + dx = mx.n_nodes() step = self.zero() for pi in IntegerVectors(k - dx, n, min_part=vy, max_part=max_y): for ly in product(*[y_homog[part] for part in pi]): diff --git a/src/sage/combinat/grossman_larson_algebras.py b/src/sage/combinat/grossman_larson_algebras.py index 0e8b9ee0ede..08f59690320 100644 --- a/src/sage/combinat/grossman_larson_algebras.py +++ b/src/sage/combinat/grossman_larson_algebras.py @@ -359,7 +359,7 @@ def degree_on_basis(self, t): sage: A.degree_on_basis(RT([RT([])])) 1 """ - return t.node_number() - 1 + return t.n_nodes() - 1 def _an_element_(self): """ @@ -508,7 +508,7 @@ def counit_on_basis(self, x): sage: A.counit_on_basis(RT([],'#')) 1 """ - if x.node_number() == 1: + if x.n_nodes() == 1: return self.base_ring().one() return self.base_ring().zero() diff --git a/src/sage/combinat/growth.py b/src/sage/combinat/growth.py index 53196640151..e5a209dac95 100644 --- a/src/sage/combinat/growth.py +++ b/src/sage/combinat/growth.py @@ -3003,7 +3003,7 @@ def rank(self, v): sage: Sylvester.rank(Sylvester.vertices(3)[0]) 3 """ - return v.node_number() + return v.n_nodes() def is_Q_edge(self, v, w): r""" @@ -3147,7 +3147,7 @@ def Q_symbol(self, Q_chain): """ def add_label(L, S, T, m): if L.is_empty(): - assert T.node_number() == 1 + assert T.n_nodes() == 1 return LabelledBinaryTree([], m) l = L.label() if T[0] == S[0]: diff --git a/src/sage/combinat/ordered_tree.py b/src/sage/combinat/ordered_tree.py index 8e7be3e36ba..fd310205324 100644 --- a/src/sage/combinat/ordered_tree.py +++ b/src/sage/combinat/ordered_tree.py @@ -411,7 +411,7 @@ def _to_parallelogram_polyomino_Boussicault_Socci(self): [[0, 0, 1], [1, 0, 0]] """ from sage.combinat.parallelogram_polyomino import ParallelogramPolyomino - if self.node_number() == 1: + if self.n_nodes() == 1: return ParallelogramPolyomino([[1], [1]]) upper_nodes = [] lower_nodes = [] @@ -450,14 +450,14 @@ def H(path): lower_path.append(0) lower_path += [1] * (W(lower_nodes[i]) - W(lower_nodes[i - 1])) lower_path.append(0) - lower_path += [1] * (self.node_number() - len(lower_path)) + lower_path += [1] * (self.n_nodes() - len(lower_path)) upper_path = [] for i in range(1, len(upper_nodes)): upper_path.append(1) upper_path += [0] * (H(upper_nodes[i]) - H(upper_nodes[i - 1])) upper_path.append(1) - upper_path += [0] * (self.node_number() - len(upper_path)) + upper_path += [0] * (self.n_nodes() - len(upper_path)) return ParallelogramPolyomino([lower_path, upper_path]) @@ -1047,7 +1047,7 @@ def __contains__(self, x): sage: T([[],[]]) in T True """ - return isinstance(x, self.element_class) and x.node_number() == self._size + return isinstance(x, self.element_class) and x.n_nodes() == self._size def _an_element_(self): """ @@ -1177,7 +1177,7 @@ def _element_constructor_(self, *args, **keywords): [] """ res = self.element_class(self._parent_for, *args, **keywords) - if res.node_number() != self._size: + if res.n_nodes() != self._size: raise ValueError("wrong number of nodes") return res diff --git a/src/sage/combinat/rooted_tree.py b/src/sage/combinat/rooted_tree.py index b7a9e9a9090..0180aa28990 100644 --- a/src/sage/combinat/rooted_tree.py +++ b/src/sage/combinat/rooted_tree.py @@ -657,7 +657,7 @@ def __contains__(self, x): sage: S([[],[]]) in S True """ - return isinstance(x, self.element_class) and x.node_number() == self._n + return isinstance(x, self.element_class) and x.n_nodes() == self._n def _an_element_(self): """ @@ -720,7 +720,7 @@ def check_element(self, el, check=True): ... ValueError: wrong number of nodes """ - if el.node_number() != self._n: + if el.n_nodes() != self._n: raise ValueError("wrong number of nodes") def cardinality(self): @@ -779,7 +779,7 @@ def _element_constructor_(self, *args, **keywords): [] """ res = self.element_class(self._parent_for, *args, **keywords) - if res.node_number() != self._n: + if res.n_nodes() != self._n: raise ValueError("wrong number of nodes") return res diff --git a/src/sage/databases/findstat.py b/src/sage/databases/findstat.py index 417bf49ebc5..0f99e5c3f69 100644 --- a/src/sage/databases/findstat.py +++ b/src/sage/databases/findstat.py @@ -4522,7 +4522,7 @@ def name(self, style='singular'): _SupportedFindStatCollection(lambda x: BinaryTree(str(x)), str, BinaryTrees, - lambda x: x.node_number(), + lambda x: x.n_nodes(), lambda x: isinstance(x, BinaryTree)), "Cores": _SupportedFindStatCollection(lambda x: Core(*literal_eval(x)), @@ -4575,7 +4575,7 @@ def name(self, style='singular'): _SupportedFindStatCollection(lambda x: OrderedTree(literal_eval(x)), str, OrderedTrees, - lambda x: x.node_number(), + lambda x: x.n_nodes(), lambda x: isinstance(x, OrderedTree)), "ParkingFunctions": _SupportedFindStatCollection(lambda x: ParkingFunction(literal_eval(x)), diff --git a/src/sage/graphs/generators/random.py b/src/sage/graphs/generators/random.py index 897724e9794..ae7c7ea6b48 100644 --- a/src/sage/graphs/generators/random.py +++ b/src/sage/graphs/generators/random.py @@ -2237,8 +2237,8 @@ def blossoming_contour(t, shift=0, seed=None): t1, t2 = t leaf_xb = ('xb',) leaf_x = ('x',) - n1 = t1.node_number() - n = t.node_number() + n1 = t1.n_nodes() + n = t.n_nodes() # adding buds on edges in t1 if not t1: