Skip to content

Commit 251a65b

Browse files
committed
Update text slightly
1 parent 3f301fd commit 251a65b

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

index.html

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -213,7 +213,7 @@ <h2>Sequential and model-based optimization [for Python]</h2>
213213
user-friendly, Pythonic interface:
214214
</p>
215215
<ul>
216-
<li><b>function <code>sambo.minimize()</code></b>
216+
<li><a href="doc/sambo/#sambo.minimize"><b>function <code>sambo.minimize()</code></b></a>
217217
to drive <b>constrained and bounded global black-box optimization</b>, design-space exploration and model calibration,
218218
modeled after well-known Python packages <b>SciPy</b> and <b>scikit-optimize</b>,<a href="#fn1"><sup>1</sup></a>
219219
supporting <abbr title="state-of-the-art; here literally, the best">SOTA</abbr> optimization algorithms like
@@ -222,14 +222,14 @@ <h2>Sequential and model-based optimization [for Python]</h2>
222222
<abbr title="Shuffled Complex Evolution method, as devised at University of Arizona"><b>SCE-UA</b></abbr>,<a href="#fn4"><sup>4</sup></a>
223223
</li>
224224
<li>
225-
<b>class <code>Optimizer</code></b> that provides an
225+
<a href="doc/sambo/#sambo.Optimizer"><b>class <code>Optimizer</code></b></a> that provides an
226226
<b><a href="doc/sambo/#sambo.Optimizer">ask-and-tell interface</a></b>,
227227
additionally supporting <b>sequential <a href="https://en.wikipedia.org/wiki/Surrogate_model">surrogate models</a></b>
228228
produced by estimators like those of <b>scikit-learn</b>, <b>skorch</b> or <b>Keras</b>,
229229
with popular algorithms including <b>Gaussian process</b> and <b>tree-based regression</b> built in,
230230
</li>
231231
<li>
232-
<b><code>SamboSearchCV</code></b>, a faster drop-in replacement for
232+
<a href="doc/sambo/#sambo.SamboSearchCV"><b><code>SamboSearchCV</code></b></a>,a faster drop-in replacement for
233233
<b><code>GridSearchCV</code></b>, <b><code>RandomizedSearchCV</code></b>
234234
and similar methods of hyperparameter tuning in complex
235235
<abbr title="machine learning">ML</abbr> pipelines.
@@ -356,8 +356,8 @@ <h4>Use case №1: Find global minimium of an objective/cost function</h4>
356356
<a href="https://en.wikipedia.org/wiki/Rosenbrock_function">Rosenbrock's banana function</a>,
357357
constrained to a circle with <math><mi>r</mi><mo>=</mo><mn>2</mn></math>, all in comparatively just a few evaluations.
358358
</p>
359-
<p>This is a simple 2D example, but partial dependence plots and sequence of evaluations plots
360-
generalize well to multiple dimensions.</p>
359+
<p>While this is a simple 2D example, partial-dependence plots and sequence-of-evaluations plots
360+
generalize well to several dimensions.</p>
361361
</div>
362362
<pre class="snippet"><code class="python">import sambo
363363
from sambo.plot import *
@@ -405,7 +405,7 @@ <h4>Use case №1: Find global minimium of an objective/cost function</h4>
405405

406406
<div class="flex">
407407
<div>
408-
<h4>Use case №2: Sequential surrogate model-based optimization through "ask-and-tell" API</h4>
408+
<h4>Use case №2: Sequential surrogate model-based "Ask-and-Tell" optimization</h4>
409409
<p>
410410
When your optimization objective is an <b>external process</b>,
411411
you may not be able to express it as a simple Python function.
@@ -414,11 +414,11 @@ <h4>Use case №2: Sequential surrogate model-based optimization through "ask-an
414414
execute the trial (e.g. the two-week "baking" process),
415415
then report back your findings (objective result <math><mi>y</mi></math>)
416416
to the optimizer for further consideration and refitting.
417-
We call this an <b>"ask-and-tell" interface</b>.
417+
We call this an <b>"ask-and-tell" API</b>.
418418
</p>
419419
<p>
420-
The <code>estimator=</code> can be any object with a <b>scikit-learn API</b>,
421-
including modern AI / neural networks.
420+
The <code>estimator=</code> can be any object with a <b>scikit-learn fit-predict API</b>,
421+
including neural networks and <b>modern AI</b>.
422422
</p>
423423
</div>
424424
<pre class="snippet"><code class="python">from sambo import Optimizer
@@ -520,12 +520,12 @@ <h3>Benchmark</h3>
520520
<p style="max-width: 80ch">
521521
It's <span id="year">2020</span>,
522522
<script>document.getElementById('year').innerHTML = (new Date()).getFullYear().toString();</script>
523-
and <b>if you're still doing</b>
524-
particle swarm, basin-hopping, Monte Carlo or evolutionary/genetic algorithms optimization,
525-
<b>you're likely throwing away precious computing cycles, at large</b>!
526-
According to our <a href="https://github.com/sambo-optimization/sambo/blob/master/benchmark">benchmark</a>
523+
and <b>if you're still doing
524+
particle swarm, basin-hopping, Monte Carlo or genetic/evolutionary algorithms</b> optimization,
525+
you're <b>likely throwing away precious computing cycles</b>, at large!
526+
According to published <a href="https://github.com/sambo-optimization/sambo/blob/master/benchmark">benchmark</a>
527527
of most common optimization algorithm implementations
528-
on several popular global optimization functions, including a few multi-dimensional ones (2–10D),
528+
on several popular global optimization functions, including some multi-dimensional ones (2–10D),
529529
<b><cite>SAMBO</cite> out-of-the-box most often converges to correct global optimum,
530530
in fewest total objective evaluations,
531531
yielding smallest absolute error,
@@ -566,7 +566,7 @@ <h3>Benchmark</h3>
566566
<tr><td>CG †</td><td>50%</td><td>414</td><td>19</td><td>0.01</td></tr>
567567
</tbody>
568568
<tfoot style="font-size: small;">
569-
<tr><th colspan="5">† Non-constrained method; constrained by patching the objective function s.t.<br>
569+
<tr><th colspan="5">† Non-constrained method; constrained by patching the objective s.t.:<br><br>
570570
&nbsp;&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML">
571571
<mrow>
572572
<mi>f</mi><mo>&#x2032;</mo>

0 commit comments

Comments
 (0)