@@ -213,7 +213,7 @@ <h2>Sequential and model-based optimization [for Python]</h2>
213213 user-friendly, Pythonic interface:
214214 </ p >
215215 < ul >
216- < li > < b > function < code > sambo.minimize()</ code > </ b >
216+ < li > < a href =" doc/sambo/#sambo.minimize " > < b > function < code > sambo.minimize()</ code > </ b > </ a >
217217 to drive < b > constrained and bounded global black-box optimization</ b > , design-space exploration and model calibration,
218218 modeled after well-known Python packages < b > SciPy</ b > and < b > scikit-optimize</ b > ,< a href ="#fn1 "> < sup > 1</ sup > </ a >
219219 supporting < abbr title ="state-of-the-art; here literally, the best "> SOTA</ abbr > optimization algorithms like
@@ -222,14 +222,14 @@ <h2>Sequential and model-based optimization [for Python]</h2>
222222 < abbr title ="Shuffled Complex Evolution method, as devised at University of Arizona "> < b > SCE-UA</ b > </ abbr > ,< a href ="#fn4 "> < sup > 4</ sup > </ a >
223223 </ li >
224224 < li >
225- < b > class < code > Optimizer</ code > </ b > that provides an
225+ < a href =" doc/sambo/#sambo.Optimizer " > < b > class < code > Optimizer</ code > </ b > </ a > that provides an
226226 < b > < a href ="doc/sambo/#sambo.Optimizer "> ask-and-tell interface</ a > </ b > ,
227227 additionally supporting < b > sequential < a href ="https://en.wikipedia.org/wiki/Surrogate_model "> surrogate models</ a > </ b >
228228 produced by estimators like those of < b > scikit-learn</ b > , < b > skorch</ b > or < b > Keras</ b > ,
229229 with popular algorithms including < b > Gaussian process</ b > and < b > tree-based regression</ b > built in,
230230 </ li >
231231 < li >
232- < b > < code > SamboSearchCV</ code > </ b > , a faster drop-in replacement for
232+ < a href =" doc/sambo/#sambo.SamboSearchCV " > < b > < code > SamboSearchCV</ code > </ b > </ a > , a faster drop-in replacement for
233233 < b > < code > GridSearchCV</ code > </ b > , < b > < code > RandomizedSearchCV</ code > </ b >
234234 and similar methods of hyperparameter tuning in complex
235235 < abbr title ="machine learning "> ML</ abbr > pipelines.
@@ -356,8 +356,8 @@ <h4>Use case №1: Find global minimium of an objective/cost function</h4>
356356 < a href ="https://en.wikipedia.org/wiki/Rosenbrock_function "> Rosenbrock's banana function</ a > ,
357357 constrained to a circle with < math > < mi > r</ mi > < mo > =</ mo > < mn > 2</ mn > </ math > , all in comparatively just a few evaluations.
358358 </ p >
359- < p > This is a simple 2D example, but partial dependence plots and sequence of evaluations plots
360- generalize well to multiple dimensions.</ p >
359+ < p > While this is a simple 2D example, partial- dependence plots and sequence-of- evaluations plots
360+ generalize well to several dimensions.</ p >
361361 </ div >
362362 < pre class ="snippet "> < code class ="python "> import sambo
363363from sambo.plot import *
@@ -405,7 +405,7 @@ <h4>Use case №1: Find global minimium of an objective/cost function</h4>
405405
406406 < div class ="flex ">
407407 < div >
408- < h4 > Use case №2: Sequential surrogate model-based optimization through "ask -and-tell" API </ h4 >
408+ < h4 > Use case №2: Sequential surrogate model-based "Ask -and-Tell" optimization </ h4 >
409409 < p >
410410 When your optimization objective is an < b > external process</ b > ,
411411 you may not be able to express it as a simple Python function.
@@ -414,11 +414,11 @@ <h4>Use case №2: Sequential surrogate model-based optimization through "ask-an
414414 execute the trial (e.g. the two-week "baking" process),
415415 then report back your findings (objective result < math > < mi > y</ mi > </ math > )
416416 to the optimizer for further consideration and refitting.
417- We call this an < b > "ask-and-tell" interface </ b > .
417+ We call this an < b > "ask-and-tell" API </ b > .
418418 </ p >
419419 < p >
420- The < code > estimator=</ code > can be any object with a < b > scikit-learn API</ b > ,
421- including modern AI / neural networks .
420+ The < code > estimator=</ code > can be any object with a < b > scikit-learn fit-predict API</ b > ,
421+ including neural networks and < b > modern AI </ b > .
422422 </ p >
423423 </ div >
424424 < pre class ="snippet "> < code class ="python "> from sambo import Optimizer
@@ -520,12 +520,12 @@ <h3>Benchmark</h3>
520520 < p style ="max-width: 80ch ">
521521 It's < span id ="year "> 2020</ span > ,
522522 < script > document . getElementById ( 'year' ) . innerHTML = ( new Date ( ) ) . getFullYear ( ) . toString ( ) ; </ script >
523- and < b > if you're still doing</ b >
524- particle swarm, basin-hopping, Monte Carlo or evolutionary/ genetic algorithms optimization,
525- < b > you're likely throwing away precious computing cycles, at large</ b > !
526- According to our < a href ="https://github.com/sambo-optimization/sambo/blob/master/benchmark "> benchmark</ a >
523+ and < b > if you're still doing
524+ particle swarm, basin-hopping, Monte Carlo or genetic/evolutionary algorithms</ b > optimization,
525+ you're < b > likely throwing away precious computing cycles</ b > , at large!
526+ According to published < a href ="https://github.com/sambo-optimization/sambo/blob/master/benchmark "> benchmark</ a >
527527 of most common optimization algorithm implementations
528- on several popular global optimization functions, including a few multi-dimensional ones (2–10D),
528+ on several popular global optimization functions, including some multi-dimensional ones (2–10D),
529529 < b > < cite > SAMBO</ cite > out-of-the-box most often converges to correct global optimum,
530530 in fewest total objective evaluations,
531531 yielding smallest absolute error,
@@ -566,7 +566,7 @@ <h3>Benchmark</h3>
566566 < tr > < td > CG †</ td > < td > 50%</ td > < td > 414</ td > < td > 19</ td > < td > 0.01</ td > </ tr >
567567 </ tbody >
568568 < tfoot style ="font-size: small; ">
569- < tr > < th colspan ="5 "> † Non-constrained method; constrained by patching the objective function s.t.< br >
569+ < tr > < th colspan ="5 "> † Non-constrained method; constrained by patching the objective s.t.: < br > < br >
570570 < math xmlns ="http://www.w3.org/1998/Math/MathML ">
571571 < mrow >
572572 < mi > f</ mi > < mo > ′</ mo >
0 commit comments