You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -366,7 +368,7 @@ <h4>Use case №1: Find global minimium of an objective/cost function</h4>
366
368
367
369
result = sambo.minimize(
368
370
rosen, bounds=[(-2, 2)]*2, method='shgo',
369
-
constraints=lambda x: sum(x**2) <= 2)
371
+
constraints=lambda x: sum(x**2) <= 2**len(x))
370
372
371
373
plot_convergence(result)
372
374
plot_objective(result) # Partial dependence
@@ -445,9 +447,9 @@ <h4>Use case №2: Sequential surrogate model-based optimization through "ask-an
445
447
<h4>Use case №3: <ahref="https://en.wikipedia.org/wiki/Hyperparameter_optimization">Hyperparameter tuning</a> for machine-learning in quasi-logarithmic time</h4>
446
448
<p>
447
449
Use <code>sambo.SamboSearchCV</code> as a <b>drop-in replacement</b> for
448
-
<code>GridSearchCV</code> (or even <code>HalvingRandomSearchCV</code>!) from scikit-learn
450
+
<code>GridSearchCV</code> (or even <code>HalvingRandomSearchCV</code>) from scikit-learn
449
451
to <b>optimize your machine learning pipeline hyperparameters in sub-linear time</b>,
450
-
yet with an algo way betterinformed than simple random search!
452
+
yet with an algorithm considerably better-informed than simple random search!
451
453
</p>
452
454
</div>
453
455
<preclass="snippet"><codeclass="python"># Example setup of a scikit-learn pipeline
@@ -521,11 +523,12 @@ <h3>Benchmark</h3>
521
523
According to our <ahref="https://github.com/sambo-optimization/sambo/blob/master/benchmark">benchmark</a>
522
524
of most common optimization algorithm implementations
523
525
on several popular global optimization functions, including a few multi-dimensional ones (2–10D),
524
-
<b><cite>SAMBO</cite> most often converges to correct global optimum,
526
+
<b><cite>SAMBO</cite>out-of-the-box most often converges to correct global optimum,
0 commit comments