@@ -11,7 +11,7 @@ method score(double LOAN, double MORTDUE, double VALUE, varchar(100) REASON, var
11
11
resultCode = revision = 0 ;
12
12
if null (pm) then do ;
13
13
pm = _new_ pymas();
14
- resultCode = pm.useModule('model_exec_abdc9fb5-243b-4979-b244-9c698579af04 ' , 1 );
14
+ resultCode = pm.useModule('model_exec_0f38bb00-011c-414e-991b-822e1e1460f7 ' , 1 );
15
15
if resultCode then do ;
16
16
resultCode = pm.appendSrcLine('import h2o' );
17
17
resultCode = pm.appendSrcLine('import gzip, shutil, os' );
@@ -21,21 +21,18 @@ method score(double LOAN, double MORTDUE, double VALUE, varchar(100) REASON, var
21
21
resultCode = pm.appendSrcLine('import pandas as pd' );
22
22
resultCode = pm.appendSrcLine('import numpy as np' );
23
23
resultCode = pm.appendSrcLine('' );
24
- resultCode = pm.appendSrcLine('' );
25
- resultCode = pm.appendSrcLine('global _thisModelFit' );
26
- resultCode = pm.appendSrcLine('' );
27
24
resultCode = pm.appendSrcLine('h2o.init()' );
28
25
resultCode = pm.appendSrcLine('' );
29
- resultCode = pm.appendSrcLine('_thisModelFit = h2o.load_model("/models/resources/viya/cd6cd3c5-174f-4f51-9f43-92a1d695b0e7 /glmFit.pickle")' );
26
+ resultCode = pm.appendSrcLine('_thisModelFit = h2o.load_model("/models/resources/viya/e34d30a4-66dd-4648-ad75-c6e92f0b01f1 /glmFit.pickle")' );
30
27
resultCode = pm.appendSrcLine('' );
31
28
resultCode = pm.appendSrcLine('def scoreglmFit(LOAN, MORTDUE, VALUE, REASON, JOB, YOJ, DEROG, DELINQ, CLAGE, NINQ, CLNO, DEBTINC):' );
32
29
resultCode = pm.appendSrcLine(' "Output: EM_EVENTPROBABILITY, EM_CLASSIFICATION"' );
33
30
resultCode = pm.appendSrcLine('' );
34
31
resultCode = pm.appendSrcLine(' try:' );
35
- resultCode = pm.appendSrcLine(' _thisModelFit' );
32
+ resultCode = pm.appendSrcLine(' global _thisModelFit' );
36
33
resultCode = pm.appendSrcLine(' except NameError:' );
37
34
resultCode = pm.appendSrcLine('' );
38
- resultCode = pm.appendSrcLine(' _thisModelFit = h2o.load_model("/models/resources/viya/cd6cd3c5-174f-4f51-9f43-92a1d695b0e7 /glmFit.pickle")' );
35
+ resultCode = pm.appendSrcLine(' _thisModelFit = h2o.load_model("/models/resources/viya/e34d30a4-66dd-4648-ad75-c6e92f0b01f1 /glmFit.pickle")' );
39
36
resultCode = pm.appendSrcLine('' );
40
37
resultCode = pm.appendSrcLine(' inputArray = pd.DataFrame([[LOAN, MORTDUE, VALUE, REASON, JOB, YOJ, DEROG, DELINQ, CLAGE, NINQ, CLNO, DEBTINC]],' );
41
38
resultCode = pm.appendSrcLine(' columns=["LOAN", "MORTDUE", "VALUE", "REASON", "JOB", "YOJ", "DEROG", "DELINQ", "CLAGE", "NINQ", "CLNO", "DEBTINC"],' );
@@ -49,7 +46,7 @@ method score(double LOAN, double MORTDUE, double VALUE, varchar(100) REASON, var
49
46
resultCode = pm.appendSrcLine(' EM_CLASSIFICATION = prediction[1][0]' );
50
47
resultCode = pm.appendSrcLine('' );
51
48
resultCode = pm.appendSrcLine(' return(EM_EVENTPROBABILITY, EM_CLASSIFICATION)' );
52
- revision = pm.publish(pm.getSource(), 'model_exec_abdc9fb5-243b-4979-b244-9c698579af04 ' );
49
+ revision = pm.publish(pm.getSource(), 'model_exec_0f38bb00-011c-414e-991b-822e1e1460f7 ' );
53
50
54
51
if ( revision < 1 ) then do ;
55
52
logr.log ( 'e' , 'py.publish() failed.' );
0 commit comments