@@ -878,10 +878,10 @@ def test_drop_duplicates(self):
878878 df_dropped = df .drop_duplicates (subset = 'Make' )
879879
880880 # Equivalent to pandas in size
881- self .assertEquals (len (tbl_dropped ), len (df_dropped ))
881+ self .assertEqual (len (tbl_dropped ), len (df_dropped ))
882882 # Number of elements in 'Make' column should be same as number of unique elements
883- self .assertEquals (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ['Make' ]))
884- self .assertEquals (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ))
883+ self .assertEqual (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ['Make' ]))
884+ self .assertEqual (tbl_dropped ['Make' ].nunique (), len (tbl_dropped ))
885885
886886 # drop duplicates for multi-element subset
887887 tbl_dropped_multi = tbl .drop_duplicates (casout = {'replace' : True ,
@@ -890,7 +890,7 @@ def test_drop_duplicates(self):
890890 df_dropped_multi = df .drop_duplicates (subset = ['Origin' , 'Type' ])
891891
892892 # Equivalent to pandas in size
893- self .assertEquals (len (tbl_dropped_multi ), len (df_dropped_multi ))
893+ self .assertEqual (len (tbl_dropped_multi ), len (df_dropped_multi ))
894894
895895 # We need some rows where all values for each col are duplicate
896896 nDuplicates = 7
@@ -915,8 +915,8 @@ def test_drop_duplicates(self):
915915 'name' : 'drop-test-4' })
916916
917917 # Make sure that the correct amount of rows were dropped
918- self .assertEquals (len (tbl ), len (tbl_dropped_all ))
919- self .assertEquals (len (duplicate_table ), len (tbl_dropped_all ) + nDuplicates )
918+ self .assertEqual (len (tbl ), len (tbl_dropped_all ))
919+ self .assertEqual (len (duplicate_table ), len (tbl_dropped_all ) + nDuplicates )
920920
921921 def test_column_iter (self ):
922922 df = self .get_cars_df ()
@@ -3314,23 +3314,23 @@ def test_nunique(self):
33143314 tbl_nunique = tbl .nunique ()
33153315 df_nunique = df .nunique ()
33163316 # Length of Series are equal
3317- self .assertEquals (len (tbl_nunique ), len (df_nunique ))
3317+ self .assertEqual (len (tbl_nunique ), len (df_nunique ))
33183318 # Indices are equal
33193319 self .assertTrue (sorted (tbl_nunique ) == sorted (df_nunique ))
33203320 # Values are equal
33213321 for col in tbl .columns :
3322- self .assertEquals (tbl_nunique [col ], df_nunique [col ])
3322+ self .assertEqual (tbl_nunique [col ], df_nunique [col ])
33233323
33243324 # Now counting NaN
33253325 tbl_nunique_nan = tbl .nunique (dropna = False )
33263326 df_nunique_nan = df .nunique (dropna = False )
33273327 # Length of Series are equal
3328- self .assertEquals (len (tbl_nunique_nan ), len (df_nunique_nan ))
3328+ self .assertEqual (len (tbl_nunique_nan ), len (df_nunique_nan ))
33293329 # Indices are equal
3330- self .assertEquals (sorted (tbl_nunique_nan ), sorted (df_nunique_nan ))
3330+ self .assertEqual (sorted (tbl_nunique_nan ), sorted (df_nunique_nan ))
33313331 # Values are equal
33323332 for col in tbl .columns :
3333- self .assertEquals (tbl_nunique_nan [col ], df_nunique_nan [col ])
3333+ self .assertEqual (tbl_nunique_nan [col ], df_nunique_nan [col ])
33343334
33353335 def test_column_unique (self ):
33363336 df = self .get_cars_df ()
0 commit comments