You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+8Lines changed: 8 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -205,6 +205,8 @@ Classification is a fundamental task in remote sensing data analysis, where the
205
205
206
206
-[U-netR](https://github.com/JonathanVSV/U-netR) -> Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery [paper](https://doi.org/10.3390/rs13183600)
207
207
208
+
-[nshaud/DeepNetsForEO](https://github.com/nshaud/DeepNetsForEO) -> Deep networks for Earth Observation with PyTorch implementations of state-of-the-art architectures for remote sensing image classification
209
+
208
210
#
209
211
## Segmentation
210
212
@@ -291,6 +293,10 @@ Image segmentation is a crucial step in image analysis and computer vision, with
291
293
292
294
-[M3SPADA](https://github.com/ecapliez/M3SPADA) -> Multi-Sensor Temporal Unsupervised Domain Adaptation for Land Cover Mapping with spatial pseudo labelling and adversarial learning
293
295
296
+
-[mapbox/robosat](https://github.com/mapbox/robosat) -> Semantic segmentation on aerial and satellite imagery with active learning to reduce annotation requirements, includes utilities for datasets like OpenStreetMap
297
+
298
+
-[mitmul/ssai-cnn](https://github.com/mitmul/ssai-cnn) -> Semantic Segmentation for Aerial / Satellite Images with CNN, includes implementation of FCN for dense labeling of aerial imagery
299
+
294
300
-[GLNet](https://github.com/VITA-Group/GLNet) -> Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images
295
301
296
302
-[LoveNAS](https://github.com/Junjue-Wang/LoveNAS) -> LoveNAS: Towards Multi-Scene Land-Cover Mapping via Hierarchical Searching Adaptive Network
@@ -1396,6 +1402,7 @@ Detecting the most noticeable or important object in a scene
1396
1402
1397
1403
-[ssd-spacenet](https://github.com/aurotripathy/ssd-spacenet) -> Detect buildings in the Spacenet dataset using Single Shot MultiBox Detector (SSD)
1398
1404
1405
+
1399
1406
-[3DBuildingInfoMap](https://github.com/LllC-mmd/3DBuildingInfoMap) -> simultaneous extraction of building height and footprint from Sentinel imagery using ResNet
1400
1407
1401
1408
-[DeepSolaris](https://github.com/thinkpractice/DeepSolaris) -> a EuroStat project to detect solar panels in aerial images, further material [here](https://github.com/FHNW-IVGI/workshop_geopython2019/tree/master/Ex.02_SolarPanels)
@@ -1432,6 +1439,7 @@ Detecting the most noticeable or important object in a scene
1432
1439
1433
1440
-[Ship-Detection-from-Satellite-Images-using-YOLOV4](https://github.com/debasis-dotcom/Ship-Detection-from-Satellite-Images-using-YOLOV4) -> uses Kaggle Airbus Ship Detection dataset
1434
1441
1442
+
1435
1443
-[shipsnet-detector](https://github.com/rhammell/shipsnet-detector) -> Detect container ships in Planet imagery using machine learning
1436
1444
1437
1445
-[Mask R-CNN for Ship Detection & Segmentation](https://medium.com/@gabogarza/mask-r-cnn-for-ship-detection-segmentation-a1108b5a083) blog post with [repo](https://github.com/gabrielgarza/Mask_RCNN)
0 commit comments