Skip to content

Commit d26fcb3

Browse files
AUTO: Sync ScalarDB docs in English to docs site repo (#1555)
Co-authored-by: josh-wong <[email protected]>
1 parent 88ab089 commit d26fcb3

File tree

8 files changed

+56
-33
lines changed

8 files changed

+56
-33
lines changed

docs/requirements.mdx

Lines changed: 27 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -534,7 +534,7 @@ ScalarDB Cluster is provided as a cluster consisting of one or more Pods on the
534534

535535
#### Platform
536536

537-
- **[Kubernetes](https://kubernetes.io/):** 1.28 - 1.32
537+
- **[Kubernetes](https://kubernetes.io/):** 1.30 - 1.33
538538
- **[Amazon Elastic Kubernetes Service (EKS)](https://aws.amazon.com/eks/)**
539539
- **[Azure Kubernetes Service (AKS)](https://azure.microsoft.com/en-us/products/kubernetes-service)**
540540
- **[Red Hat OpenShift](https://www.redhat.com/en/technologies/cloud-computing/openshift):** TBD
@@ -657,6 +657,31 @@ ScalarDB Analytics can run analytical queries on the following NoSQL databases *
657657
</TabItem>
658658
</Tabs>
659659

660+
#### Analytical platforms
661+
662+
ScalarDB Analytics can run analytical queries on the following analytical platforms **not** managed by ScalarDB Core and Cluster.
663+
664+
<Tabs groupId="analytical-platforms" queryString>
665+
<TabItem value="databricks" label="Databricks" default>
666+
667+
| Version | Databricks |
668+
| :-------------------------- | :--------- |
669+
| **ScalarDB Analytics 3.16** ||
670+
| **ScalarDB Analytics 3.15** ||
671+
| **ScalarDB Analytics 3.14** ||
672+
673+
</TabItem>
674+
<TabItem value="snowflake" label="Snowflake">
675+
676+
| Version | Snowflake |
677+
| :-------------------------- | :-------- |
678+
| **ScalarDB Analytics 3.16** ||
679+
| **ScalarDB Analytics 3.15** ||
680+
| **ScalarDB Analytics 3.14** ||
681+
682+
</TabItem>
683+
</Tabs>
684+
660685
### Database permission requirements
661686

662687
ScalarDB Analytics requires read permissions to perform its operations on the underlying databases.
@@ -681,7 +706,7 @@ The server component of ScalarDB Analytics (ScalarDB Analytics server) is provid
681706

682707
#### Platform
683708

684-
- **[Kubernetes](https://kubernetes.io/):** 1.28 - 1.32
709+
- **[Kubernetes](https://kubernetes.io/):** 1.30 - 1.33
685710
- **[Amazon Elastic Kubernetes Service (EKS)](https://aws.amazon.com/eks/)**
686711
- **[Azure Kubernetes Service (AKS)](https://azure.microsoft.com/en-us/products/kubernetes-service)**
687712
- **[Red Hat OpenShift](https://www.redhat.com/en/technologies/cloud-computing/openshift):** TBD

docs/scalardb-analytics/_README.mdx

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -24,13 +24,12 @@ This section provides links to various ScalarDB Analytics–related documentatio
2424

2525
### Key documentation
2626

27-
* [Overview](./overview.mdx) - Understand ScalarDB Analytics architecture and features
28-
* [Deploy ScalarDB Analytics](./deployment.mdx) - Deploy on Amazon EMR, Databricks, and other platforms
29-
* [Run Analytical Queries](./run-analytical-queries.mdx) - Execute queries across multiple databases
30-
* [Administration Guide](./administration.mdx) - Manage catalogs and data sources
31-
* [Configuration Reference](./configuration.mdx) - Configure Spark and data sources
27+
* [Deploy ScalarDB Analytics in Public Cloud Environments](./deployment.mdx) - Deploy on Amazon EMR, Databricks, and other platforms
28+
* [Create a ScalarDB Analytics Catalog](./create-scalardb-analytics-catalog.mdx) - Create catalogs and add data sources
29+
* [Run Analytical Queries Through ScalarDB Analytics](./run-analytical-queries.mdx) - Execute queries across multiple databases
30+
* [ScalarDB Analytics Configurations](./configurations.mdx) - Configure Spark and data sources
3231

3332
### Technical details
3433

35-
* [Design Document](./design.mdx) - Deep dive into the technical architecture
36-
* [Version Compatibility](./run-analytical-queries.mdx#version-compatibility) - Supported Spark and Scala versions
34+
* [ScalarDB Analytics Design](./design.mdx) - Deep dive into the technical architecture
35+
* [Spark](../requirements.mdx#spark) - Supported Spark and Scala versions

docs/scalardb-analytics/configurations.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -344,6 +344,6 @@ spark.sql.catalog.analytics.server.tls.ca_root_cert_path /path/to/cert.pem
344344

345345
## Next steps
346346

347-
- [Catalog management](catalog-management.mdx) - Learn how to manage catalogs and data sources
348-
- [Run analytical queries](run-analytical-queries.mdx) - Start running queries with your configuration
349-
- [Deployment guide](deployment.mdx) - Deploy ScalarDB Analytics in production
347+
- [Create a ScalarDB Analytics Catalog](./create-scalardb-analytics-catalog.mdx) - Learn how to create catalogs and add data sources
348+
- [Run Analytical Queries Through ScalarDB Analytics](run-analytical-queries.mdx) - Start running queries with your configuration
349+
- [Deploy ScalarDB Analytics in Public Cloud Environments](deployment.mdx) - Deploy ScalarDB Analytics in production

docs/scalardb-analytics/create-scalardb-analytics-catalog.mdx

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ Catalog information is managed by a component called a ScalarDB Analytics server
1818

1919
### Prerequisites
2020

21-
The ScalarDB Analytics server requires a database to store catalog information. We refer to this database as the **metadata database** throughout this documentation. ScalarDB Analytics supports the following databases for the metadata database:
21+
The ScalarDB Analytics server requires a database to store catalog information. This database is referred to as the **metadata database** throughout this documentation. ScalarDB Analytics supports the following databases for the metadata database:
2222

2323
- PostgreSQL
2424
- MySQL
@@ -56,7 +56,9 @@ scalar.db.analytics.server.metering.storage.path=/var/scalardb-analytics/meterin
5656
```
5757

5858
:::note
59-
For production deployments, configure metering storage to use object storage (for example, Amazon S3, Google Cloud Storage, or Azure Blob Storage) instead of the local filesystem.For detailed configuration options, see the [Configuration reference](./configurations.mdx).
59+
60+
For production deployments, configure metering storage to use object storage (for example, Amazon S3, Google Cloud Storage, or Azure Blob Storage) instead of the local filesystem. For detailed configuration options, see [ScalarDB Analytics Configurations](./configurations.mdx).
61+
6062
:::
6163

6264
### Start the ScalarDB Analytics server
@@ -108,6 +110,8 @@ docker exec scalardb-analytics-server grpc-health-probe -addr=localhost:11051 -t
108110

109111
ScalarDB Analytics CLI is a command-line tool that communicates with the ScalarDB Analytics server to manage catalogs, register data sources, and perform administrative tasks.
110112

113+
For details, see the [ScalarDB Analytics CLI Command Reference](./reference-cli-command.mdx)
114+
111115
### Install the CLI
112116

113117
The `scalardb-analytics-cli` tool is available as a container image:
@@ -146,7 +150,7 @@ scalar.db.analytics.client.server.tls.ca_root_cert_path=/path/to/ca.crt
146150
scalar.db.analytics.client.server.tls.override_authority=analytics.example.com
147151
```
148152

149-
For detailed configuration options, see the [Configuration reference](./configurations.mdx).
153+
For detailed configuration options, see [ScalarDB Analytics Configurations](./configurations.mdx).
150154

151155
### Set up an alias (optional)
152156

docs/scalardb-analytics/deployment.mdx

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -10,13 +10,14 @@ import TabItem from "@theme/TabItem";
1010
# Deploy ScalarDB Analytics in Public Cloud Environments
1111

1212
This guide explains how to deploy ScalarDB Analytics in a public cloud environment. ScalarDB Analytics consists of two main components: a ScalarDB Analytics server and Apache Spark. In this guide, you can choose either Amazon EMR or Databricks for the Spark environment.
13+
1314
For details about ScalarDB Analytics, refer to [ScalarDB Analytics Design](./design.mdx).
1415

15-
## Deploy ScalarDB Analytics catalog server
16+
## Deploy ScalarDB Analytics server
1617

17-
ScalarDB Analytics requires a catalog server to manage metadata and data source connections. The catalog server should be deployed by using Helm charts on a Kubernetes cluster.
18+
ScalarDB Analytics requires a catalog server to manage metadata and data source connections. The catalog server should be deployed by using Helm Charts on a Kubernetes cluster.
1819

19-
For detailed deployment instructions, see [TBD - Helm chart deployment guide].
20+
For detailed deployment instructions, see [How to install Scalar products through AWS Marketplace](../scalar-kubernetes/AwsMarketplaceGuide?products=scalardb-analytics-server).
2021

2122
After deploying the catalog server, note the following information for Spark configuration:
2223

@@ -156,7 +157,7 @@ spark.sql.catalog.<CATALOG_NAME>.server.metering.port 11052
156157
Replace the placeholders:
157158

158159
- `<CATALOG_NAME>`: The name of the catalog. This must match a catalog created on the ScalarDB Analytics server.
159-
- `<CATALOG_SERVER_HOST>`: The host address of your ScalarDB Analytics catalog server.
160+
- `<CATALOG_SERVER_HOST>`: The host address of your ScalarDB Analytics server.
160161

161162
4. Add the library of ScalarDB Analytics to the launched cluster as a Maven dependency. For details on how to add the library, refer to the [Databricks cluster libraries documentation](https://docs.databricks.com/en/libraries/cluster-libraries.html).
162163

docs/scalardb-analytics/design.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -50,12 +50,12 @@ graph TD
5050
The following are definitions for those levels:
5151

5252
- **Catalog** is a folder that contains all your data source information. For example, you might have one catalog called `analytics_catalog` for your analytics data and another called `operational_catalog` for your day-to-day operations.
53-
- **Data source** represents each data source you connect to. For each data source, we store important information like:
53+
- **Data source** represents each data source you connect to. For each data source, ScalarDB Analytics stores important information like:
5454
- What kind of data source it is (PostgreSQL, Cassandra, etc.)
5555
- How to connect to it (connection details and passwords)
5656
- Special features the data source supports (like transactions)
5757
- **Namespace** is like a subfolder within your data source that groups related tables together. In PostgreSQL these are called schemas, in Cassandra they're called keyspaces. You can have multiple levels of namespaces, similar to having folders within folders.
58-
- **Table** is where your actual data lives. For each table, we keep track of:
58+
- **Table** is where your actual data lives. For each table, ScalarDB Analytics keeps track of:
5959
- What columns it has
6060
- What type of data each column can store
6161
- Whether columns can be empty (null)
@@ -95,7 +95,7 @@ When registering a data source to ScalarDB Analytics, two types of mappings occu
9595
1. **Catalog structure mapping**: The data source's catalog information (namespaces, tables, and columns) is resolved and mapped to the universal data catalog structure
9696
2. **Data type mapping**: Native data types from each data source are mapped to the universal data types listed above
9797

98-
These mappings ensure compatibility and consistency across different database systems. For detailed information about how specific databases are mapped, see [Catalog information mappings by data source](./design.mdx#catalog-information-mappings-by-data-source).
98+
These mappings ensure compatibility and consistency across different database systems. For detailed information about how specific databases are mapped, see [Catalog structure mappings by data source](./reference-data-source.mdx#catalog-structure-mappings-by-data-source).
9999

100100
## Query engine
101101

docs/scalardb-analytics/reference-cli-command.mdx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ tags:
44
displayed_sidebar: docsEnglish
55
---
66

7-
# ScalarDB Analytics CLI command reference
7+
# ScalarDB Analytics CLI Command Reference
88

99
The ScalarDB Analytics CLI uses a hierarchical command structure:
1010

@@ -87,7 +87,7 @@ scalardb-analytics-cli data-source register --data-source-json <path-to-json>
8787

8888
Please replace `<path-to-json>` with the file path to your data source registration file.
8989

90-
The `register` command requires a data source registration file. The file format is described in the [Data source configuration](#data-source-configuration) section below.
90+
The `register` command requires a data source registration file. The file format is described in the [Data source registration file format](reference-data-source.mdx#data-source-registration-file-format) section below.
9191

9292
### List all data sources
9393

docs/scalardb-analytics/run-analytical-queries.mdx

Lines changed: 3 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -20,13 +20,7 @@ This section describes the prerequisites, setting up ScalarDB Analytics in the S
2020
### Prerequisites
2121

2222
- **ScalarDB Analytics server:** A running instance that manages catalog information and connects to your data sources. The server must be set up with at least one data source registered. For registering data sources, see [Create a ScalarDB Analytics Catalog](./create-scalardb-analytics-catalog.mdx).
23-
- **Apache Spark:** A compatible version of Apache Spark. For supported versions, see [Version compatibility](#version-compatibility). If you don't have Spark installed yet, please download the Spark distribution from [Apache's website](https://spark.apache.org/downloads.html).
24-
25-
:::note
26-
27-
Apache Spark is built with either Scala 2.12 or Scala 2.13. ScalarDB Analytics supports both versions. You need to be sure which version you are using so that you can select the correct version of ScalarDB Analytics later. For more details, see [Version compatibility](#version-compatibility).
28-
29-
:::
23+
- **Apache Spark:** A compatible version of Apache Spark. For supported versions, see [Spark](../requirements.mdx#spark). If you don't have Spark installed yet, please download the Spark distribution from [Apache's website](https://spark.apache.org/downloads.html).
3024

3125
### Set up ScalarDB Analytics in the Spark configuration
3226

@@ -116,7 +110,7 @@ Depending on your environment, you may not be able to use all the methods mentio
116110

117111
:::
118112

119-
With all these methods, you can refer to tables in ScalarDB Analytics by using the same table identifier format. For details about how ScalarDB Analytics maps catalog information from data sources, see [Catalog information reference](./reference-data-source.mdx#catalog-information-reference).
113+
With all these methods, you can refer to tables in ScalarDB Analytics by using the same table identifier format. For details about how ScalarDB Analytics maps catalog information from data sources, see [Catalog structure mappings by data source](./reference-data-source.mdx#catalog-structure-mappings-by-data-source).
120114

121115
<Tabs groupId="spark-application-type" queryString>
122116
<TabItem value="spark-driver" label="Spark driver application">
@@ -129,7 +123,7 @@ First, you need to set up your Java project. For example, if you are using Gradl
129123

130124
```kotlin
131125
dependencies {
132-
implementation("com.scalar-labs:scalardb-analytics-spark-<SPARK_VERSION>_<SCALA_VERSION>:<SCALARDB_ANALYTICS_VERSION>")
126+
implementation("com.scalar-labs:scalardb-analytics-spark-all-<SPARK_VERSION>_<SCALA_VERSION>:<SCALARDB_ANALYTICS_VERSION>")
133127
}
134128
```
135129

0 commit comments

Comments
 (0)