|
10 | 10 | if int(pydantic.__version__.split(".")[0]) > 1: |
11 | 11 | from pydantic.v1 import BaseModel, Field, HttpUrl |
12 | 12 | else: |
13 | | - from pydantic import BaseModel, Field, HttpUrl |
| 13 | + from pydantic import BaseModel, Field, HttpUrl # type: ignore |
14 | 14 |
|
15 | 15 | CpuSpecificationType = Union[str, int, float] |
16 | 16 | StorageSpecificationType = Union[str, int, float] # TODO(phil): we can make this more specific. |
@@ -163,17 +163,17 @@ class CreateLLMEndpointRequest(BaseModel): |
163 | 163 | cpus: CpuSpecificationType |
164 | 164 | gpus: int |
165 | 165 | memory: StorageSpecificationType |
166 | | - gpu_type: GpuType |
| 166 | + gpu_type: Optional[GpuType] |
167 | 167 | storage: Optional[StorageSpecificationType] |
168 | | - optimize_costs: Optional[bool] |
| 168 | + optimize_costs: Optional[bool] = None |
169 | 169 | min_workers: int |
170 | 170 | max_workers: int |
171 | 171 | per_worker: int |
172 | 172 | labels: Dict[str, str] |
173 | | - prewarm: Optional[bool] |
| 173 | + prewarm: Optional[bool] = None |
174 | 174 | high_priority: Optional[bool] |
175 | | - default_callback_url: Optional[HttpUrl] |
176 | | - default_callback_auth: Optional[CallbackAuth] |
| 175 | + default_callback_url: Optional[HttpUrl] = None |
| 176 | + default_callback_auth: Optional[CallbackAuth] = None |
177 | 177 | public_inference: Optional[bool] = True |
178 | 178 | """ |
179 | 179 | Whether the endpoint can be used for inference for all users. LLM endpoints are public by default. |
|
0 commit comments