Skip to content

Commit 129a54b

Browse files
authored
fix(genapi): sentence wording
1 parent 41a2a3b commit 129a54b

File tree

1 file changed

+2
-3
lines changed
  • tutorials/how-to-implement-rag-generativeapis

1 file changed

+2
-3
lines changed

tutorials/how-to-implement-rag-generativeapis/index.mdx

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ In this tutorial, you will learn how to implement RAG using LangChain, a leading
7676
SCW_GENERATIVE_APIs_ENDPOINT="https://api.scaleway.ai/v1"
7777
```
7878

79-
## Embeddings and vector store setup
79+
## Setup embeddings and vector store
8080

8181
### Import required modules
8282

@@ -291,7 +291,7 @@ Then, we will embed them as vectors and store these vectors in your PostgreSQL d
291291
```sh
292292
scaleway instance shutdown --instance-uuid example-28f3-4e91-b2af-4c3502562d72
293293
```
294-
This is command is not correct at all, and hallucinate in several ways to fit the question prompt content: `scaleway` instead of `scw`, `instance` instead of `instance server`, `shutdown` instead of `stop` and `--instance-uuid` parameter doesn't exist.
294+
This is command is not correct at all, and "hallucinate" in several ways to fit the question prompt content: `scaleway` instead of `scw`, `instance` instead of `instance server`, `shutdown` instead of `stop` and `--instance-uuid` parameter doesn't exist.
295295
296296
### Query the RAG system with your own prompt template
297297
@@ -303,7 +303,6 @@ Personalizing your prompt template allows you to tailor the responses from your
303303
from langchain.chains.combine_documents import create_stuff_documents_chain
304304
from langchain_core.prompts import PromptTemplate
305305
from langchain_openai import ChatOpenAI
306-
import time
307306
308307
llm = ChatOpenAI(
309308
base_url=os.getenv("SCW_GENERATIVE_APIs_ENDPOINT"),

0 commit comments

Comments
 (0)