Skip to content

Commit 14c622d

Browse files
authored
feat(ifr): bring support for Nvidia Nemotron 70b instruct (#3985)
* feat(ifr): extended fc support * feat(ifr): adding nemotron to ref content * fix(ifr): mixtral switched from FP16 to BF16 * feat(ifr): updated support
1 parent d41243c commit 14c622d

File tree

5 files changed

+93
-5
lines changed

5 files changed

+93
-5
lines changed

ai-data/generative-apis/how-to/use-function-calling.mdx

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ content:
77
paragraph: Learn how to enhance AI applications by integrating external tools using Scaleway's Chat Completions API service.
88
tags: chat-completions-api
99
dates:
10-
validation: 2024-10-30
10+
validation: 2024-11-18
1111
posted: 2024-09-24
1212
---
1313

@@ -28,6 +28,7 @@ Function calling allows a large language model (LLM) to interact with external t
2828
* llama-3.1-8b-instruct
2929
* llama-3.1-70b-instruct
3030
* mistral-nemo-instruct-2407
31+
* pixtral-12b-2409
3132

3233
## Understanding function calling
3334

ai-data/managed-inference/reference-content/function-calling-support.mdx

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ content:
77
paragraph: Function calling allows models to connect to external tools.
88
tags:
99
dates:
10-
validation: 2024-10-25
10+
validation: 2024-11-18
1111
posted: 2024-10-25
1212
categories:
1313
- ai-data
@@ -29,6 +29,8 @@ The following models in Scaleway's Managed Inference library can call tools as p
2929
* meta/llama-3.1-70b-instruct
3030
* mistral/mistral-7b-instruct-v0.3
3131
* mistral/mistral-nemo-instruct-2407
32+
* mistral/pixtral-12b-2409
33+
* nvidia/llama-3.1-nemotron-70b-instruct
3234

3335
## Understanding function calling
3436

Lines changed: 81 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,81 @@
1+
---
2+
meta:
3+
title: Understanding the Llama-3.1-Nemotron-70b-instruct model
4+
description: Deploy your own secure Llama-3.1-Nemotron-70b-instruct model with Scaleway Managed Inference. Privacy-focused, fully managed.
5+
content:
6+
h1: Understanding the Llama-3.1-Nemotron-70b-instruct model
7+
paragraph: This page provides information on the Llama-3.1-Nemotron-70b-instruct model
8+
tags:
9+
dates:
10+
validation: 2024-11-15
11+
posted: 2024-11-15
12+
categories:
13+
- ai-data
14+
---
15+
16+
## Model overview
17+
18+
| Attribute | Details |
19+
|-----------------|------------------------------------|
20+
| Provider | [Nvidia](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct) |
21+
| License | [Llama 3.1 community](https://llama.meta.com/llama3_1/license/) | |
22+
| Compatible Instances | H100 (FP8), H100-2 (FP8) |
23+
| Context Length | up to 128k tokens |
24+
25+
## Model names
26+
27+
```bash
28+
meta/llama-3.1-nemotron-70b-instruct:fp8
29+
```
30+
31+
## Compatible Instances
32+
33+
| Instance type | Max context length |
34+
| ------------- |-------------|
35+
| H100 | 16k (FP8) |
36+
| H100-2 | 128k (FP8) |
37+
38+
## Model introduction
39+
40+
Introduced October 14, 2024, NVIDIA's Nemotron 70B Instruct is a specialized version of the Llama 3.1 model designed to follow complex instructions.
41+
NVIDIA employed Reinforcement Learning from Human Feedback (RLHF) to fine-tune the model’s ability to generate relevant and informative responses.
42+
43+
## Why is it useful?
44+
45+
- As of October 2024, Llama 3.1 Nemotron 70B has achieved top rankings in multiple automatic alignment benchmarks. It boasts an overall score of 94.1 on RewardBench, with specific scores of 97.5 for chat performance and 98.1 in reasoning tasks.
46+
- Just like with the original Llama 3.1, this model brings a context window up to 128K tokens and [supports tool calling](/ai-data/managed-inference/reference-content/function-calling-support).
47+
- With 70 billion parameters, this model is highly capable of generating sophisticated, human-like responses in a wide range of applications, from casual chatbots to complex technical systems.
48+
49+
## How to use it
50+
51+
### Sending Managed Inference requests
52+
53+
To perform inference tasks with your Llama-3.1-Nemotron-70b-instruct deployed at Scaleway, use the following command:
54+
55+
```bash
56+
curl -s \
57+
-H "Authorization: Bearer <IAM API key>" \
58+
-H "Content-Type: application/json" \
59+
--request POST \
60+
--url "https://<Deployment UUID>.ifr.fr-par.scaleway.com/v1/chat/completions" \
61+
--data '{"model":"meta/llama-3.1-nemotron-70b-instruct:fp8", "messages":[{"role": "user","content": "There is a llama in my garden, what should I do?"}], "max_tokens": 500, "temperature": 0.7, "stream": false}'
62+
```
63+
64+
Make sure to replace `<IAM API key>` and `<Deployment UUID>` with your actual [IAM API key](/identity-and-access-management/iam/how-to/create-api-keys/) and the Deployment UUID you are targeting.
65+
66+
<Message type="tip">
67+
The model name allows Scaleway to put your prompts in the expected format.
68+
</Message>
69+
70+
<Message type="note">
71+
Ensure that the `messages` array is properly formatted with roles (system, user, assistant) and content.
72+
</Message>
73+
74+
### Receiving Inference responses
75+
76+
Upon sending the HTTP request to the public or private endpoints exposed by the server, you will receive inference responses from the managed Managed Inference server.
77+
Process the output data according to your application's needs. The response will contain the output generated by the LLM model based on the input provided in the request.
78+
79+
<Message type="note">
80+
Despite efforts for accuracy, the possibility of generated text containing inaccuracies or [hallucinations](/ai-data/managed-inference/concepts/#hallucinations) exists. Always verify the content generated independently.
81+
</Message>

ai-data/managed-inference/reference-content/mixtral-8x7b-instruct-v0.1.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -18,22 +18,22 @@ categories:
1818
| Attribute | Details |
1919
|-----------------|------------------------------------|
2020
| Provider | [Mistral](https://mistral.ai/technology/#models) |
21-
| Compatible Instances | H100 (FP8) - H100-2 (FP16) |
21+
| Compatible Instances | H100 (FP8) - H100-2 (BF16) |
2222
| Context size | 32k tokens |
2323

2424
## Model names
2525

2626
```bash
2727
mistral/mixtral-8x7b-instruct-v0.1:fp8
28-
mistral/mixtral-8x7b-instruct-v0.1:fp16
28+
mistral/mixtral-8x7b-instruct-v0.1:bf16
2929
```
3030

3131
## Compatible Instances
3232

3333
| Instance type | Max context length |
3434
| ------------- |-------------|
3535
| H100 | 32k (FP8)
36-
| H100-2 | 32k (FP16)
36+
| H100-2 | 32k (BF16)
3737

3838
## Model introduction
3939

menu/navigation.json

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -611,6 +611,10 @@
611611
"label": "Llama-3.1-70b-instruct model",
612612
"slug": "llama-3.1-70b-instruct"
613613
},
614+
{
615+
"label": "Llama-3.1-nemotron-70b-instruct model",
616+
"slug": "llama-3.1-nemotron-70b-instruct"
617+
},
614618
{
615619
"label": "Mistral-nemo-instruct-2407 model",
616620
"slug": "mistral-nemo-instruct-2407"

0 commit comments

Comments
 (0)