@@ -34,7 +34,7 @@ In this tutorial, you will learn how to implement RAG using LangChain, a leading
3434
3535### Install required packages
3636
37- 1 . Run the following command to install the required Python packages:
37+ Run the following command to install the required Python packages:
3838
3939 ``` sh
4040 pip install langchain langchainhub langchain_openai langchain_community langchain_postgres unstructured " unstructured[pdf]" libmagic python-dotenv psycopg2 boto3
@@ -48,7 +48,7 @@ In this tutorial, you will learn how to implement RAG using LangChain, a leading
4848
4949### Create a .env file
5050
51- 2 . Create a ` .env ` file and add the following variables. These will store your API keys, database connection details, and other configuration values.
51+ Create a ` .env ` file and add the following variables. These will store your API keys, database connection details, and other configuration values.
5252
5353 ``` sh
5454 # .env file
@@ -69,8 +69,8 @@ In this tutorial, you will learn how to implement RAG using LangChain, a leading
6969 # Scaleway Object Storage bucket configuration
7070 # # Will be used to store your proprietary data (PDF, CSV etc)
7171 SCW_BUCKET_NAME=your_scaleway_bucket_name
72- SCW_REGION=fr-par
73- SCW_BUCKET_ENDPOINT=" https://s3.{{SCW_REGION}} .scw.cloud" # Object Storage main endpoint, e.g., https://s3.fr-par.scw.cloud
72+ SCW_REGION=fr-par # Region where your bucket is located
73+ SCW_BUCKET_ENDPOINT=" https://s3.fr-par .scw.cloud" # Object Storage main endpoint, e.g., https://s3.fr-par.scw.cloud for fr-par region
7474
7575 # Scaleway Generative APIs endpoint
7676 # # LLM and Embedding model are served through this base URL
0 commit comments