You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: tutorials/how-to-implement-rag/index.mdx
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -40,7 +40,7 @@ Run the following command to install the required packages:
40
40
```sh
41
41
pip install langchain psycopg2 python-dotenv
42
42
```
43
-
### Step 2: Create a .env file
43
+
### Create a .env file
44
44
45
45
Create a .env file and add the following variables. These will store your API keys, database connection details, and other configuration values.
46
46
@@ -117,9 +117,9 @@ conn = psycopg2.connect(
117
117
cur = conn.cursor()
118
118
```
119
119
120
-
## Embeddings and Vector Store Setup
120
+
## Embeddings and vector store setup
121
121
122
-
### Import Required Modules
122
+
### Import required modules
123
123
124
124
```python
125
125
# rag.py
@@ -130,7 +130,7 @@ from langchain_postgres import PGVector
130
130
131
131
### Configure OpenAI Embeddings
132
132
133
-
We will utilize the [OpenAIEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html) class from LangChain and store the embeddings in PostgreSQL using the PGVector integration.
133
+
We will use the [OpenAIEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html) class from LangChain and store the embeddings in PostgreSQL using the PGVector integration.
0 commit comments