|
| 1 | +--- |
| 2 | +meta: |
| 3 | + title: Integrating Scaleway Generative APIs with popular AI tools |
| 4 | + description: Learn how to integrate Scaleway's Generative APIs with popular AI tools. |
| 5 | +content: |
| 6 | + h1: Integrating Scaleway Generative APIs with popular AI tools |
| 7 | + paragraph: Learn how to integrate Scaleway's Generative APIs with popular AI tools. |
| 8 | +tags: generative-apis, ai, language-models |
| 9 | +validation_date: 2025-02-18 |
| 10 | +posted_date: 2025-02-18 |
| 11 | +--- |
| 12 | + |
| 13 | +Scaleway’s Generative APIs provide easy integration with various AI frameworks and tools. This guide outlines the configuration steps needed to integrate Scaleway's models into different environments. |
| 14 | + |
| 15 | +## OpenAI-Compatible libraries |
| 16 | +Scaleway Generative APIs follow OpenAI’s API structure, making integration straightforward. |
| 17 | + |
| 18 | +### Configuration |
| 19 | +Set the API key and base URL in your OpenAI-compatible client: |
| 20 | + |
| 21 | +```python |
| 22 | +import openai |
| 23 | + |
| 24 | +openai.api_key = "<API secret key>" |
| 25 | +openai.api_base = "https://api.scaleway.ai/v1" |
| 26 | + |
| 27 | +response = openai.ChatCompletion.create( |
| 28 | + model="llama-3.1-8b-instruct", |
| 29 | + messages=[{"role": "user", "content": "Tell me a joke about AI"}] |
| 30 | +) |
| 31 | + |
| 32 | +print(response["choices"][0]["message"]["content"]) |
| 33 | +``` |
| 34 | + |
| 35 | + |
| 36 | +## LangChain (RAG & LLM applications) |
| 37 | + |
| 38 | +LangChain supports Scaleway models for both inference and embeddings. |
| 39 | + |
| 40 | +### Configuration |
| 41 | +1. Install required dependencies: |
| 42 | + ```bash |
| 43 | + pip install langchain langchain_openai langchain_postgres psycopg2 |
| 44 | + ``` |
| 45 | +2. Set up the API connection: |
| 46 | + ```python |
| 47 | + from langchain_openai import OpenAIEmbeddings, ChatOpenAI |
| 48 | + import os |
| 49 | + |
| 50 | + os.environ["OPENAI_API_KEY"] = "<API secret key>" |
| 51 | + os.environ["OPENAI_API_BASE"] = "https://api.scaleway.ai/v1" |
| 52 | + |
| 53 | + llm = ChatOpenAI(model="llama-3.1-8b-instruct") |
| 54 | + embeddings = OpenAIEmbeddings(model="bge-multilingual-gemma2") |
| 55 | + ``` |
| 56 | +3. Use a vector store for retrieval: |
| 57 | + ```python |
| 58 | + from langchain_postgres import PGVector |
| 59 | + |
| 60 | + connection_string = "postgresql+psycopg2://user:password@host:port/dbname" |
| 61 | + vector_store = PGVector(connection=connection_string, embeddings=embeddings) |
| 62 | + ``` |
| 63 | + |
| 64 | +## LlamaIndex (document indexing & retrieval) |
| 65 | + |
| 66 | +LlamaIndex enables easy document retrieval using Scaleway’s models. |
| 67 | + |
| 68 | +### Configuration |
| 69 | +1. Install dependencies: |
| 70 | + ```bash |
| 71 | + pip install llama-index |
| 72 | + ``` |
| 73 | +2. Set up the embedding model: |
| 74 | + ```python |
| 75 | + from llama_index.embeddings.openai import OpenAIEmbedding |
| 76 | + |
| 77 | + embed_model = OpenAIEmbedding( |
| 78 | + api_key="<API secret key>", |
| 79 | + api_base="https://api.scaleway.ai/v1", |
| 80 | + model="bge-multilingual-gemma2" |
| 81 | + ) |
| 82 | + ``` |
| 83 | +3. Index and query documents: |
| 84 | + ```python |
| 85 | + from llama_index import VectorStoreIndex, SimpleDirectoryReader |
| 86 | + |
| 87 | + documents = SimpleDirectoryReader("data").load_data() |
| 88 | + index = VectorStoreIndex.from_documents(documents, embed_model=embed_model) |
| 89 | + query_engine = index.as_query_engine() |
| 90 | + |
| 91 | + response = query_engine.query("Summarize this document") |
| 92 | + print(response) |
| 93 | + ``` |
| 94 | + |
| 95 | +## Continue Dev (AI coding assistance) |
| 96 | + |
| 97 | +Continue Dev allows configuring Scaleway models for code completion. |
| 98 | + |
| 99 | +### Configuration |
| 100 | +Modify `continue.json` to add Scaleway’s API: |
| 101 | + |
| 102 | +```json |
| 103 | +{ |
| 104 | + "models": [ |
| 105 | + { |
| 106 | + "title": "Qwen2.5-Coder-32B-Instruct", |
| 107 | + "provider": "scaleway", |
| 108 | + "model": "qwen2.5-coder-32b-instruct", |
| 109 | + "apiKey": "<API secret key>" |
| 110 | + } |
| 111 | + ], |
| 112 | + "embeddingsProvider": { |
| 113 | + "provider": "scaleway", |
| 114 | + "model": "bge-multilingual-gemma2", |
| 115 | + "apiKey": "<API secret key>" |
| 116 | + } |
| 117 | +} |
| 118 | +``` |
| 119 | + |
| 120 | +--- |
| 121 | + |
| 122 | +## Transformers (Hugging Face integration) |
| 123 | + |
| 124 | +Hugging Face’s `transformers` library can send requests to Scaleway-hosted models. |
| 125 | + |
| 126 | +### Configuration |
| 127 | +1. Install dependencies: |
| 128 | + ```bash |
| 129 | + pip install transformers requests |
| 130 | + ``` |
| 131 | +2. Use a custom API endpoint: |
| 132 | + ```python |
| 133 | + from transformers import pipeline |
| 134 | + |
| 135 | + generator = pipeline( |
| 136 | + "text-generation", |
| 137 | + model="llama-3.1-8b-instruct", |
| 138 | + tokenizer="meta-llama/Llama-3-8b", |
| 139 | + api_base="https://api.scaleway.ai/v1", |
| 140 | + api_key="<API secret key>" |
| 141 | + ) |
| 142 | + |
| 143 | + print(generator("Write a short poem about the ocean")) |
| 144 | + ``` |
| 145 | + |
| 146 | +--- |
| 147 | + |
| 148 | +## API clients & custom integrations |
| 149 | +You can interact with Scaleway’s Generative APIs directly using any HTTP client. |
| 150 | + |
| 151 | +### cURL example |
| 152 | +```bash |
| 153 | +curl https://api.scaleway.ai/v1/chat/completions \ |
| 154 | + -H "Authorization: Bearer <API secret key>" \ |
| 155 | + -H "Content-Type: application/json" \ |
| 156 | + -d '{ |
| 157 | + "model": "llama-3.1-8b-instruct", |
| 158 | + "messages": [{"role": "user", "content": "What is quantum computing?"}] |
| 159 | + }' |
| 160 | +``` |
| 161 | + |
| 162 | +### Python example |
| 163 | +```python |
| 164 | +import requestsMe |
| 165 | + |
| 166 | +headers = { |
| 167 | + "Authorization": "Bearer <API secret key>", |
| 168 | + "Content-Type": "application/json" |
| 169 | +} |
| 170 | + |
| 171 | +data = { |
| 172 | + "model": "llama-3.1-8b-instruct", |
| 173 | + "messages": [{"role": "user", "content": "Explain black holes"}] |
| 174 | +} |
| 175 | + |
| 176 | +response = requests.post("https://api.scaleway.ai/v1/chat/completions", json=data, headers=headers) |
| 177 | +print(response.json()["choices"][0]["message"]["content"]) |
| 178 | +``` |
0 commit comments