@@ -159,7 +159,7 @@ julia> b = Mod{9}(1)
159159Mod{9}(1)
160160
161161julia> a+b
162- ERROR: can not promote types Mod{10,Int64} and Mod{9,Int64}
162+ ERROR: Cannot promote types with different moduli
163163```
164164
165165
@@ -295,7 +295,7 @@ Mod{5}(3)
295295Mod{5}(4)
296296
297297julia> collect(Mod{6})
298- 6-element Vector{Mod{6, T} where T }:
298+ 6-element Vector{Mod{6} }:
299299 Mod{6}(0)
300300 Mod{6}(1)
301301 Mod{6}(2)
@@ -304,7 +304,7 @@ julia> collect(Mod{6})
304304 Mod{6}(5)
305305
306306julia> [k*k for k ∈ Mod{7}]
307- 7-element Vector{Mod{7, Int64 }}:
307+ 7-element Vector{Mod{7}}:
308308 Mod{7}(0)
309309 Mod{7}(1)
310310 Mod{7}(4)
@@ -349,14 +349,14 @@ With extra arguments, `rand` produces random vectors or matrices populated with
349349modular numbers:
350350```
351351julia> rand(GaussMod{10},4)
352- 4-element Vector{GaussMod{10, Complex{Int64} }}:
352+ 4-element Vector{GaussMod{10}}:
353353 GaussMod{10}(2 + 6im)
354354 GaussMod{10}(2 + 6im)
355355 GaussMod{10}(7 + 4im)
356356 GaussMod{10}(7 + 3im)
357357
358358julia> rand(Mod{10},2,5)
359- 2×5 Matrix{Mod{10, Int64 }}:
359+ 2×5 Matrix{Mod{10}}:
360360 Mod{10}(9) Mod{10}(8) Mod{10}(1) Mod{10}(3) Mod{10}(1)
361361 Mod{10}(2) Mod{10}(0) Mod{10}(9) Mod{10}(0) Mod{10}(2)
362362```
@@ -391,7 +391,7 @@ The `Mod` and `GaussMod` types work well with my
391391julia> using LinearAlgebraX
392392
393393julia> A = rand(GaussMod{13},3,3)
394- 3×3 Matrix{GaussMod{13, Complex{Int64} }}:
394+ 3×3 Matrix{GaussMod{13}}:
395395 GaussMod{13}(12 + 2im) GaussMod{13}(3 + 5im) GaussMod{13}(6 + 11im)
396396 GaussMod{13}(0 + 4im) GaussMod{13}(2 + 1im) GaussMod{13}(12 + 2im)
397397 GaussMod{13}(6 + 0im) GaussMod{13}(3 + 11im) GaussMod{13}(4 + 8im)
@@ -400,13 +400,13 @@ julia> detx(A)
400400GaussMod{13}(11 + 5im)
401401
402402julia> invx(A)
403- 3×3 Matrix{GaussMod{13, Complex{Int64} }}:
403+ 3×3 Matrix{GaussMod{13}}:
404404 GaussMod{13}(12 + 11im) GaussMod{13}(3 + 6im) GaussMod{13}(12 + 11im)
405405 GaussMod{13}(2 + 7im) GaussMod{13}(1 + 3im) GaussMod{13}(9 + 2im)
406406 GaussMod{13}(4 + 7im) GaussMod{13}(8 + 9im) GaussMod{13}(9 + 1im)
407407
408408julia> ans * A
409- 3×3 Matrix{GaussMod{13, Complex{Int64} }}:
409+ 3×3 Matrix{GaussMod{13}}:
410410 GaussMod{13}(1 + 0im) GaussMod{13}(0 + 0im) GaussMod{13}(0 + 0im)
411411 GaussMod{13}(0 + 0im) GaussMod{13}(1 + 0im) GaussMod{13}(0 + 0im)
412412 GaussMod{13}(0 + 0im) GaussMod{13}(0 + 0im) GaussMod{13}(1 + 0im)
0 commit comments