@@ -19,13 +19,13 @@ def _allocate_new_param(
1919 p : dict [str , Sequence [float ]]
2020) -> dict [str , str | bool | int | Sequence [float ]]:
2121 return {
22- ' paramset_type' : ' unconstrained' ,
23- ' n_parameters' : 1 ,
24- ' is_shared' : True ,
25- ' inits' : p [' inits' ],
26- ' bounds' : p [' bounds' ],
27- ' is_scalar' : True ,
28- ' fixed' : False ,
22+ " paramset_type" : " unconstrained" ,
23+ " n_parameters" : 1 ,
24+ " is_shared" : True ,
25+ " inits" : p [" inits" ],
26+ " bounds" : p [" bounds" ],
27+ " is_scalar" : True ,
28+ " fixed" : False ,
2929 }
3030
3131
@@ -45,30 +45,30 @@ class _builder(BaseBuilder):
4545 is_shared = False
4646
4747 def __init__ (self , config ):
48- self .builder_data = {' funcs' : {}}
48+ self .builder_data = {" funcs" : {}}
4949 self .config = config
5050
5151 def collect (self , thismod , nom ):
5252 maskval = True if thismod else False
5353 mask = [maskval ] * len (nom )
54- return {' mask' : mask }
54+ return {" mask" : mask }
5555
5656 def append (self , key , channel , sample , thismod , defined_samp ):
5757 self .builder_data .setdefault (key , {}).setdefault (sample , {}).setdefault (
58- ' data' , {' mask' : []}
58+ " data" , {" mask" : []}
5959 )
6060 nom = (
61- defined_samp [' data' ]
61+ defined_samp [" data" ]
6262 if defined_samp
6363 else [0.0 ] * self .config .channel_nbins [channel ]
6464 )
6565 moddata = self .collect (thismod , nom )
66- self .builder_data [key ][sample ][' data' ][ ' mask' ] += moddata [' mask' ]
66+ self .builder_data [key ][sample ][" data" ][ " mask" ] += moddata [" mask" ]
6767 if thismod :
68- if thismod [' name' ] != funcname :
68+ if thismod [" name" ] != funcname :
6969 print (thismod )
70- self .builder_data [' funcs' ].setdefault (
71- thismod [' name' ], thismod [' data' ][ ' expr' ]
70+ self .builder_data [" funcs" ].setdefault (
71+ thismod [" name" ], thismod [" data" ][ " expr" ]
7272 )
7373 self .required_parsets = {
7474 k : [_allocate_new_param (v )] for k , v in newparams .items ()
@@ -85,14 +85,14 @@ def make_applier(
8585) -> BaseApplier :
8686 class _applier (BaseApplier ):
8787 name = funcname
88- op_code = ' multiplication'
88+ op_code = " multiplication"
8989
9090 def __init__ (self , modifiers , pdfconfig , builder_data , batch_size = None ):
91- self .funcs = [make_func (v , deps ) for v in builder_data [' funcs' ].values ()]
91+ self .funcs = [make_func (v , deps ) for v in builder_data [" funcs" ].values ()]
9292
9393 self .batch_size = batch_size
9494 pars_for_applier = deps
95- _modnames = [f' { mtype } /{ m } ' for m , mtype in modifiers ]
95+ _modnames = [f" { mtype } /{ m } " for m , mtype in modifiers ]
9696
9797 parfield_shape = (
9898 (self .batch_size , pdfconfig .npars )
@@ -103,11 +103,11 @@ def __init__(self, modifiers, pdfconfig, builder_data, batch_size=None):
103103 parfield_shape , pdfconfig .par_map , pars_for_applier
104104 )
105105 self ._custommod_mask = [
106- [[builder_data [modname ][s ][' data' ][ ' mask' ]] for s in pdfconfig .samples ]
106+ [[builder_data [modname ][s ][" data" ][ " mask" ]] for s in pdfconfig .samples ]
107107 for modname in _modnames
108108 ]
109109 self ._precompute ()
110- events .subscribe (' tensorlib_changed' )(self ._precompute )
110+ events .subscribe (" tensorlib_changed" )(self ._precompute )
111111
112112 def _precompute (self ):
113113 tensorlib , _ = get_backend ()
@@ -132,15 +132,15 @@ def apply(self, pars):
132132 tensorlib , _ = get_backend ()
133133 if self .batch_size is None :
134134 deps = self .param_viewer .get (pars )
135- print (' deps' , deps .shape )
135+ print (" deps" , deps .shape )
136136 results = tensorlib .astensor ([f (deps ) for f in self .funcs ])
137- results = tensorlib .einsum (' msab,m->msab' , self .custommod_mask , results )
137+ results = tensorlib .einsum (" msab,m->msab" , self .custommod_mask , results )
138138 else :
139139 deps = self .param_viewer .get (pars )
140- print (' deps' , deps .shape )
140+ print (" deps" , deps .shape )
141141 results = tensorlib .astensor ([f (deps ) for f in self .funcs ])
142142 results = tensorlib .einsum (
143- ' msab,ma->msab' , self .custommod_mask , results
143+ " msab,ma->msab" , self .custommod_mask , results
144144 )
145145 results = tensorlib .where (
146146 self .custommod_mask_bool , results , self .custommod_default
0 commit comments