@@ -186,7 +186,7 @@ def test_valid_estimators_dont_fail(mapie_estimator_name):
186186 x , y = TOY_DATASETS [task ]
187187 y = np .abs (y ) # to avoid negative values with Gamma NCS
188188 ml_model = ML_MODELS [task ]
189- groups = np .random .choice (10 , len (x ))
189+ partition = np .random .choice (10 , len (x ))
190190 model = clone (ml_model )
191191 model .fit (x , y )
192192 mapie_inst = deepcopy (mapie_estimator )
@@ -195,8 +195,8 @@ def test_valid_estimators_dont_fail(mapie_estimator_name):
195195 estimator = model , cv = "prefit" , ** mapie_kwargs
196196 )
197197 )
198- mondrian_cp .fit (x , y , groups = groups )
199- mondrian_cp .predict (x , groups = groups , alpha = .2 )
198+ mondrian_cp .fit (x , y , partition = partition )
199+ mondrian_cp .predict (x , partition = partition , alpha = .2 )
200200
201201
202202@pytest .mark .parametrize (
@@ -210,7 +210,7 @@ def test_non_cs_fails(mapie_estimator_name):
210210 task = task_dict ["task" ]
211211 x , y = TOY_DATASETS [task ]
212212 ml_model = ML_MODELS [task ]
213- groups = np .random .choice (10 , len (x ))
213+ partition = np .random .choice (10 , len (x ))
214214 model = clone (ml_model )
215215 model .fit (x , y )
216216 mapie_inst = deepcopy (mapie_estimator )
@@ -220,7 +220,7 @@ def test_non_cs_fails(mapie_estimator_name):
220220 )
221221 )
222222 with pytest .raises (ValueError , match = r".*The conformity score for*" ):
223- mondrian_cp .fit (x , y , groups = groups )
223+ mondrian_cp .fit (x , y , partition = partition )
224224
225225
226226@pytest .mark .parametrize ("mapie_estimator_name" , VALID_MAPIE_ESTIMATORS_NAMES )
@@ -233,7 +233,7 @@ def test_invalid_cv_fails(mapie_estimator_name, non_valid_cv):
233233 task = task_dict ["task" ]
234234 x , y = TOY_DATASETS [task ]
235235 ml_model = ML_MODELS [task ]
236- groups = np .random .choice (10 , len (x ))
236+ partition = np .random .choice (10 , len (x ))
237237 model = clone (ml_model )
238238 mapie_inst = deepcopy (mapie_estimator )
239239 mondrian_cp = MondrianCP (
@@ -242,7 +242,7 @@ def test_invalid_cv_fails(mapie_estimator_name, non_valid_cv):
242242 )
243243 )
244244 with pytest .raises (ValueError , match = r".*estimator uses cv='prefit'*" ):
245- mondrian_cp .fit (x , y , groups = groups )
245+ mondrian_cp .fit (x , y , partition = partition )
246246
247247
248248@pytest .mark .parametrize (
@@ -257,7 +257,7 @@ def test_non_valid_estimators_fails(mapie_estimator_name):
257257 x , y = TOY_DATASETS [task ]
258258 y = np .abs (y ) # to avoid negative values with Gamma NCS
259259 ml_model = ML_MODELS [task ]
260- groups = np .random .choice (10 , len (x ))
260+ partition = np .random .choice (10 , len (x ))
261261 model = clone (ml_model )
262262 model .fit (x , y )
263263 mapie_inst = deepcopy (mapie_estimator )
@@ -277,89 +277,89 @@ def test_non_valid_estimators_fails(mapie_estimator_name):
277277 )
278278 with pytest .raises (ValueError , match = r".*The estimator must be a*" ):
279279 if task == "multilabel_classification" :
280- mondrian_cp .fit (x , y , groups = groups )
280+ mondrian_cp .fit (x , y , partition = partition )
281281 elif task == "calibration" :
282- mondrian_cp .fit (x , y , groups = groups , ** mapie_kwargs )
282+ mondrian_cp .fit (x , y , partition = partition , ** mapie_kwargs )
283283 else :
284- mondrian_cp .fit (x , y , groups = groups , ** mapie_kwargs )
284+ mondrian_cp .fit (x , y , partition = partition , ** mapie_kwargs )
285285
286286
287- def test_groups_not_defined_by_integers_fails ():
288- """Test that groups not defined by integers fails"""
287+ def test_partition_not_defined_by_integers_fails ():
288+ """Test that partition not defined by integers fails"""
289289 x , y = TOY_DATASETS ["classification" ]
290290 ml_model = ML_MODELS ["classification" ]
291291 model = clone (ml_model )
292292 model .fit (x , y )
293293 mondrian = MondrianCP (
294294 mapie_estimator = MapieClassifier (estimator = model , cv = "prefit" )
295295 )
296- groups = np .random .choice (10 , len (x )).astype (str )
296+ partition = np .random .choice (10 , len (x )).astype (str )
297297 with pytest .raises (
298- ValueError , match = r".*The groups must be defined by integers*"
298+ ValueError , match = r".*The partition must be defined by integers*"
299299 ):
300- mondrian .fit (x , y , groups = groups )
300+ mondrian .fit (x , y , partition = partition )
301301
302302
303- def test_groups_with_less_than_2_fails ():
304- """Test that groups with less than 2 elements fails"""
303+ def test_partition_with_less_than_2_fails ():
304+ """Test that partition with less than 2 elements fails"""
305305 x , y = TOY_DATASETS ["classification" ]
306306 ml_model = ML_MODELS ["classification" ]
307307 model = clone (ml_model )
308308 model .fit (x , y )
309309 mondrian = MondrianCP (
310310 mapie_estimator = MapieClassifier (estimator = model , cv = "prefit" )
311311 )
312- groups = np .array ([1 ] + [2 ] * (len (x ) - 1 ))
312+ partition = np .array ([1 ] + [2 ] * (len (x ) - 1 ))
313313 with pytest .raises (
314314 ValueError , match = r".*There must be at least 2 individuals*"
315315 ):
316- mondrian .fit (x , y , groups = groups )
316+ mondrian .fit (x , y , partition = partition )
317317
318318
319- def test_groups_and_x_have_same_length_in_fit ():
320- """Test that groups and x have the same length in fit"""
319+ def test_partition_and_x_have_same_length_in_fit ():
320+ """Test that partition and x have the same length in fit"""
321321 x , y = TOY_DATASETS ["classification" ]
322322 ml_model = ML_MODELS ["classification" ]
323323 model = clone (ml_model )
324324 model .fit (x , y )
325325 mondrian = MondrianCP (
326326 mapie_estimator = MapieClassifier (estimator = model , cv = "prefit" )
327327 )
328- groups = np .random .choice (10 , len (x ) - 1 )
328+ partition = np .random .choice (10 , len (x ) - 1 )
329329 with pytest .raises (ValueError , match = r".*he number of individuals in*" ):
330- mondrian .fit (x , y , groups = groups )
330+ mondrian .fit (x , y , partition = partition )
331331
332332
333- def test_all_groups_in_predict_are_in_fit ():
334- """Test that all groups in predict are in fit"""
333+ def test_all_partition_in_predict_are_in_fit ():
334+ """Test that all partition in predict are in fit"""
335335 x , y = TOY_DATASETS ["classification" ]
336336 ml_model = ML_MODELS ["classification" ]
337337 model = clone (ml_model )
338338 model .fit (x , y )
339339 mondrian = MondrianCP (
340340 mapie_estimator = MapieClassifier (estimator = model , cv = "prefit" )
341341 )
342- groups = np .random .choice (10 , len (x ))
343- mondrian .fit (x , y , groups = groups )
344- groups = np .array ([99 ] * len (x ))
342+ partition = np .random .choice (10 , len (x ))
343+ mondrian .fit (x , y , partition = partition )
344+ partition = np .array ([99 ] * len (x ))
345345 with pytest .raises (ValueError , match = r".*There is at least one new*" ):
346- mondrian .predict (x , groups = groups , alpha = .2 )
346+ mondrian .predict (x , partition = partition , alpha = .2 )
347347
348348
349- def test_groups_and_x_have_same_length_in_predict ():
350- """Test that groups and x have the same length in predict"""
349+ def test_partition_and_x_have_same_length_in_predict ():
350+ """Test that partition and x have the same length in predict"""
351351 x , y = TOY_DATASETS ["classification" ]
352352 ml_model = ML_MODELS ["classification" ]
353353 model = clone (ml_model )
354354 model .fit (x , y )
355355 mondrian = MondrianCP (
356356 mapie_estimator = MapieClassifier (estimator = model , cv = "prefit" )
357357 )
358- groups = np .random .choice (10 , len (x ))
359- mondrian .fit (x , y , groups = groups )
360- groups = np .random .choice (10 , len (x ) - 1 )
358+ partition = np .random .choice (10 , len (x ))
359+ mondrian .fit (x , y , partition = partition )
360+ partition = np .random .choice (10 , len (x ) - 1 )
361361 with pytest .raises (ValueError , match = r".*The number of individuals in*" ):
362- mondrian .predict (x , groups = groups , alpha = .2 )
362+ mondrian .predict (x , partition = partition , alpha = .2 )
363363
364364
365365def test_alpha_none_return_one_element ():
@@ -371,24 +371,24 @@ def test_alpha_none_return_one_element():
371371 mondrian = MondrianCP (
372372 mapie_estimator = MapieClassifier (estimator = model , cv = "prefit" )
373373 )
374- groups = np .random .choice (10 , len (x ))
375- mondrian .fit (x , y , groups = groups )
376- preds = mondrian .predict (x , groups = groups )
374+ partition = np .random .choice (10 , len (x ))
375+ mondrian .fit (x , y , partition = partition )
376+ preds = mondrian .predict (x , partition = partition )
377377 assert len (preds ) == len (x )
378378
379379
380- def test_groups_is_list_ok ():
381- """Test that the groups can be a list"""
380+ def test_partition_is_list_ok ():
381+ """Test that the partition can be a list"""
382382 x , y = TOY_DATASETS ["classification" ]
383383 ml_model = ML_MODELS ["classification" ]
384384 model = clone (ml_model )
385385 model .fit (x , y )
386386 mondrian = MondrianCP (
387387 mapie_estimator = MapieClassifier (estimator = model , cv = "prefit" )
388388 )
389- groups = np .random .choice (10 , len (x )).tolist ()
390- mondrian .fit (x , y , groups = groups )
391- mondrian .predict (x , groups = groups , alpha = .2 )
389+ partition = np .random .choice (10 , len (x )).tolist ()
390+ mondrian .fit (x , y , partition = partition )
391+ mondrian .predict (x , partition = partition , alpha = .2 )
392392
393393
394394@pytest .mark .parametrize ("mapie_estimator_name" , VALID_MAPIE_ESTIMATORS_NAMES )
@@ -402,7 +402,7 @@ def test_same_results_if_only_one_group(mapie_estimator_name, alpha):
402402 x , y = TOY_DATASETS [task ]
403403 y = np .abs (y )
404404 ml_model = ML_MODELS [task ]
405- groups = [0 ] * len (x )
405+ partition = [0 ] * len (x )
406406 model = clone (ml_model )
407407 model .fit (x , y )
408408 mapie_inst_mondrian = deepcopy (mapie_estimator )
@@ -415,9 +415,9 @@ def test_same_results_if_only_one_group(mapie_estimator_name, alpha):
415415 mapie_classic = mapie_classic_inst (
416416 estimator = model , cv = "prefit" , random_state = 0 , ** mapie_kwargs ,
417417 )
418- mondrian_cp .fit (x , y , groups = groups )
418+ mondrian_cp .fit (x , y , partition = partition )
419419 mapie_classic .fit (x , y )
420- mondrian_pred = mondrian_cp .predict (x , groups = groups , alpha = alpha )
420+ mondrian_pred = mondrian_cp .predict (x , partition = partition , alpha = alpha )
421421 classic_pred = mapie_classic .predict (x , alpha = alpha )
422422 assert np .allclose (mondrian_pred [0 ], classic_pred [0 ])
423423 assert np .allclose (mondrian_pred [1 ], classic_pred [1 ])
0 commit comments