@@ -18,7 +18,7 @@ What is done in this tutorial ?
18
18
19
19
..
20
20
21
- - Create a custom class `TensorflowToMapie ` to resolve adherence
21
+ - Create a custom class `` TensorflowToMapie ` ` to resolve adherence
22
22
problems between Tensorflow and Mapie
23
23
24
24
Tutorial preparation
@@ -319,8 +319,8 @@ a perfect classifier.
319
319
model.compile(loss = loss, optimizer = optimizer, metrics = metrics)
320
320
return model
321
321
322
- Training the algorithm with a custom class called `TensorflowToMapie `
323
- -----------------------------------------------------------------------
322
+ 3. Training the algorithm with a custom class called `` TensorflowToMapie ` `
323
+ --------------------------------------------------------------------------
324
324
325
325
As MAPIE asked that the model has a `fit `, `predict_proba `,
326
326
`predict ` class attributes and that the information about if whether
@@ -492,7 +492,7 @@ or not the model is fitted.
492
492
y_pred = cirfar10_model.predict(X_test)
493
493
494
494
495
- 3 . Prediction of the prediction sets
495
+ 4 . Prediction of the prediction sets
496
496
------------------------------------
497
497
498
498
We will now estimate the prediction sets with the five conformal methods
@@ -664,7 +664,7 @@ label whose cumulated score is above the given quantile, tends to give
664
664
slightly higher marginal coverages since the prediction sets are
665
665
slightly too big.
666
666
667
- 4 . Visualization of the prediction sets
667
+ 6 . Visualization of the prediction sets
668
668
---------------------------------------
669
669
670
670
.. code-block :: python
@@ -896,7 +896,7 @@ generation of null prediction sets. The compromise between estimating
896
896
null prediction sets with calibrated coverages or non-empty prediction
897
897
sets but with larger marginal coverages is entirely up to the user.
898
898
899
- 6 . Prediction set sizes
899
+ 7 . Prediction set sizes
900
900
-----------------------
901
901
902
902
.. code-block :: python
@@ -914,7 +914,7 @@ sets but with larger marginal coverages is entirely up to the user.
914
914
.. image :: Cifar10_files/Cifar10_41_0.png
915
915
916
916
917
- 7 . Conditional coverages
917
+ 8 . Conditional coverages
918
918
------------------------
919
919
920
920
We just saw that all our methods (except the “naive” one) give marginal
@@ -974,6 +974,19 @@ different conformal methods.
974
974
plt.legend(loc = [1 , 0 ])
975
975
976
976
977
+
978
+
979
+ .. parsed-literal ::
980
+
981
+
982
+
983
+
984
+
985
+ .. parsed-literal ::
986
+
987
+
988
+
989
+
977
990
.. image :: Cifar10_files/Cifar10_46_2.png
978
991
979
992
0 commit comments